12 United States Patent

Faust et al.

US012373252B1

10) Patent No.: US 12,373,252 B1

(54) MANAGING FAIRNESS OF RESOURCE
SCHEDULING FOR PERFORMANCE
BURSTING IN MULTI-TENANT
ENVIRONMENTS

(71) Applicant: Amazon Technologies, Inc., Seattle,
WA (US)

(72) Inventors: Ethan John Faust, Seattle, WA (US);
Yuxuan Liu, Bellevue, WA (US);
Nicholas Matthew Rudi Goossens,
Western Cape (ZA); Alan Powell,
Western Cape (ZA); Andries

Dippenaar, Western Cape (ZA);
Saurabh Nirmal Modh, San Jose, CA

(US); Sivang Mali, Seattle, WA (US);
Siwei Liu, Seattle, WA (US); Mykhailo
Karataiev, Redmond, WA (US); Anton
Valter, Renton, WA (US); Alexander
Gregory Bestavros, Scattle, WA (US)

(73) Assignee: Amazon Technologies, Inc., Seattle,
WA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 609 days.

(21) Appl. No.: 17/855,374

(22) Filed: Jun. 30, 2022

45) Date of Patent: Jul. 29, 2025
(51) Int. CL
GOGF 9/46 (2006.01)
GOGF 9/48 (2006.01)
GOGF 9/50 (2006.01)
(52) U.S. Cl.
CPC GO6F 9/4887 (2013.01); GOGF 9/5038

(2013.01)

(58) Field of Classification Search
CPC e GO6F 9/4887; GO6F 9/5038

See application file for complete search history.

Primary Examiner — Gregory A Kessler

(74) Attorney, Agent, or Firm — Nicholson DeVos
Webster & Elliott LLP

(57) ABSTRACT

Techniques for managing cloud computing resources host-
ing burstable performance instances are described. A host
computer system of a provider network executes burstable
performance compute nstances. Compute capacity usage
data 1s obtained from the host computer system, the compute
capacity usage data including a first indication of a first
compute capacity used by a first burstable performance
compute instance. A first weight for the first burstable
performance compute nstance 1s calculated, the first weight
being inversely related to the first compute capacity. A
scheduler of the host computer system 1s updated with
process prioritization weights, the process prioritization
weilghts mcluding a first process prioritization weight that 1s
based at least imn part on the first weight. The scheduler
allocates compute capacity based on the process prioritiza-
tion weights.

20 Claims, 15 Drawing Sheets

OPERATIONS
900

y

902

EXECUTING, BY A HOST COMPUTER SYSTEM OF A PROVIDER NETWORK, A
PLURALITY OF BURSTABLE PERFORMANCE COMPUTE INSTANCES, WHEREIN AT
LEAST TWOQ OF THE PLURALITY OF BURSTABLE PERFORMANCE COMPUTE
INSTANCES HAVE DIFFERENT SIZES

|

204

OBTAINING, FROM THE HOST COMPUTER SYSTEM, COMPUTE CAPACITY USAGE
DATA, THE COMPUTE CAPACITY USAGE DATA INCLUDING A FIRST INDICATION OF
AFIRST COMPUTE CAPACITY USED BY A FIRST BURSTABLE PERFORMANCE
COMPUTE INSTANCE OF THE PLURALITY OF BURSTABLE PERFORMANCE
COMPUTE INSTANCES OVER A FIRST PERIOD QF TIME

|

906

CALCULATING A FIRST WEIGHT FOR THE FIRST BURSTABLE PERFORMANCE
COMPUTE INSTANCE, WHEREIN THE FIRST WEIGHT IS INVERSELY RELATED TO
THE FIRST COMPUTE CAPACITY

|

908

UPDATING A SCHEDULER OF THE HOST COMPUTER SYSTEM WITH A PLURALITY
OF PROCESS PRIORITIZATION WEIGHTS, THE PLURALITY OF PROCESS
PRIORITIZATION WEIGHTS INCLUDING A FIRST PROCESS PRIORITIZATION
WEIGHT THAT IS BASED AT LEAST IN PART ON THE FIRST WEIGHT

|

210

ALLOCATING, BY THE SCHEDULER AND OVER A SECOND PERIOD OF TIME, AT
LEAST A FIRST PORTION OF A TOTAL COMPUTE CAPACITY OF THE HOST
COMPUTER SYSTEM TQ THE FIRST BURSTABLE PERFORMANCE COMPUTE
INSTANCE BASED AT LEAST IN PART ON THE FIRST PROCESS PRIOCRITIZATION
WEIGHT

I Old

74}

JOINGHS
INAWFDVNYIN ALIOVaVO

US 12,373,252 Bl

9l
=[OMER
INENEO AL

4]
JOINS3S
NOILVHOIN 3AIT

—_
= 57T a8
—_ 0IA3S
= (S)340LS V1VC N 190m
=
) S
_ —
— | 13374 WALSAS “ Ch i
Jol | ¥3LNdWOO LSOH | HOINS 19A3Q
& JOING3S ~[1010] NOILYZITYNLYIA AINOM 1097
>~ LNIWIOVYNYA e L TIYMAYYH
o NILSAS LSOH e -bgh A PE P EE
“ SINILSAS LSOH -]
= 007 NIOMLIN ¥IAIAOHd ANOTD _f T L)

JIVINS, JNIA3IN, (JONTHT43H)
661 S3ZIS |
INIT3SVY ANIT3ASYY INITASYS IINYLSN
%01 %0¢ %07 J1av.LSHNg |
184Nd 18¥Ng 184Nd TIdNYXS |
%G %0G %00} |

U.S. Patent

US 12,373,252 Bl

Sheet 2 of 15

Jul. 29, 2025

U.S. Patent

¢ Il

« VNS, JANIAIN, JOdY 1, A

ANI145Vd %01 ANI13d5VE %08 ANI13d5VE %07

15dNd %S¢ 15aM4d %05 15aM4d %001

6/ SNOILaldO5dd ddAL JONVLISNI F1dvV.LSdNd J'1dWNvX4

TIVYINS, 01 “JANIA3IN, 9 3DV, 2)
AJLSAS 1SOH V OLNO A3aNovd
002 STONVLSNI 319v1SHNg IT1dNVX3

7 7 10z 1anat
“\I‘\|~\\ ! -7 _ﬁ JONVYINSOSRIAd
INM3SYE IA0GY ALIOVAVO 4 e “ g NI35V4
1S¥NE SIAINOYd ANITISYE p=———— —— — — e~
MO39 WOOHAYIH TVLO. - e
e . kﬂ, 202 LINIT
_ _- JONVIWNHO4H3d
S LT 1948

SJdONVLSNI ONILSand

NOILVZITILN
104aN0Sds

ON=

¥3434)

dOA
O %001

U.S. Patent Jul. 29, 2025 Sheet 3 of 15 US 12,373,252 B1

PERFORMANCE) TYPE INSTANC

SLOT FOR OTHER (E.G., NON-BURSTABLE

EXAMPLE HOST SYSTEM 304

o
.
<
ak
‘w"
(ENUMERATED SLOTS: 2 LARGE, 5 MEDIUM, 2 SMALL,;
1 OTHER)

HOST PACKING
SLOTS

FIG. 3

EXAMPLE RHOST SYSTEM TEMPLATES 308

"MEDIUM’
BASELINE
FOOTPRINT

=)
Al
O
=
N
-
O
w

FOOTPRINT
(E.G., 0.4 VCPU)

‘LARGE" BASELINE

<

(ENUMERATED SLOTS: 2 LARGE, 6 MEDIUM, 10 SMALL)

-~ FOOTPRINT
(E.G, 0.1 VCPU

"SMALL"
BASELINE

<1’
i
<C
—
al
=
L

EXAMPLE BURSTABLE PERFORMANCE SIZES 302

373,252 Bl

2

@
y—
N
-
" “ N 52T (S)340LS V1va
— | FHodd Linv43a |1 s —
= | N eV
<t “ | S37140dd IOVSN
S _ A 11308 _ 304N0S T
& | TVYINIO-FONVISNI | | 1NV 1SN
N | |

“ I1408d B -

014103dS-4IN0LSND

“ : /|| s37H0dd Jovsn
& | 37140¥d)/ | 298Nhos38
>~ “ 014103dS-FONVLSN] “\ N1SAS 150l
2 S
gl
= 7 \ eey SIdAL I40Md
= .u/ 39VSN I1dNYX3

“ AFINA
A me.,mmwmﬁ)
pEY 311404d
JOVSN F1dNVX3

U.S. Patent

v "Old
144
FOINY3S
NOILVHOIN 3AIT
$371404d 39VSN (9)NOILYSOIN ¥ 3LVILINI
JOMNOSI
JONVLSN SO LIN
31V0dN - JOVSN FTdNVX3
o 0C1 S

PANIS e

0 'd 'V SIONVLSNI
40 ONINAAHOS
3 1dNVXd

INFWIOVNYA /A 1
NILSAS LSOH /) |
{1 U= SORLIREONYISN |
404d 3OVSN \ i = SORLINTOOd |
304N0STY WILSAS e "\ iy
1SOH 31vddn JOVSNNIVLIE0 (€) Vo mmmmm e _
SIONVLSNI IINATFHOS 7TF
O ¥31INA3HOS
@m@%: 31NdINOD NOVAL
e e e e e
— "™
| : «—IN|L—
|
| . |
_lviajolvl .,
Jv]alv]v)

2,
LS
O
P
<1
—
D
=
-~
i3
I
>
-
Lt
1
D
c;}

Gl¥ WALSAS LSOH

US 12,373,252 Bl

Sheet 5 of 15

Jul. 29, 2025

U.S. Patent

G Old
~1I EEEEEEEEEEEEEEEEEEE /
- N

| 70 3OVSN OAY | N - ._. — — - —— -
m,, N u O L3N FOYSN F0UNOS TN OMLIN 3DYSN 30UN0STY |
;;;;;;;;;;;;;;;;;;; NOON _ 8/9G INILSAS LSOH ezl WIALSAS 1SOH |
T = SO\ | % (s)3dols viva) JovSN _
“ 0'Y. Y FOVSN OAY 8295 180 “7 Mo .Nmm - “ - 308N0STY LSOH "

geTr ol B ” 1\ b)
o mmm m mw.,qmww@ ..wmm F..Hmw | S37H0¥d IOVSN | JOVSN 30¥NOSIY Y 10HSTMH L |
304N0STY “ JONVLSNI WO “
- T FONVLSN] | ATdNYXE HOH |

|

8/95 :l |
NTLSAS X och \
mmwmafoo S37408d IOVSN
LSOH | 304N0S3Y

WALSAS LSOH

9ll

015

v.1vQa LSOH INANWAOV 1d

1SOH J31VID0SSY 'S3LVAIANYD

ot ik g ek gl gl vhbbibiges v bbbl s

J11H40dd 4OVSN d0dN0SAd JONVLISNI ANV dOVSN 30410538 WALSAS _
LSOH NO (d5vH S4LVUIANYD WALSAS LSOH 40 145 WILINI G414 11

MAAAAS ARBAREE ARG BAMBRAN ARAREA: AARRLAR ARBRAGL ARRAAE AMAARE GAMRAE BRAAAE ALY EEE!EEEEEEEEEEEEEEEI‘

(S)FLVAIONYO WILSAS
1SOH AN-S

30IAY3S Oz0

¢el SN
2Ll SAH 93

SAN0AY
NANWAOV Id dAIH04d

3 1140dd FOVEN J0dN0Sda JONVLSNI
\ SORILIW 39VSN F0HN0STY WIALSAS

WALSAS LSOH 40 145 WILINI NIVLd0

9 "OId

L-€L S
JvddHlL
AddAF

AR
JvduHl
“dddAR

US 12,373,252 Bl

p-¢19 44900 P-C19 4400

¢elS

¢tlS L El9 L-€L9 b-EL9

I_“_“_“_'____”‘_“"_“_“_““_‘_ﬂ

- Qv3dHL | | Qv3uH | QV3uH. | | Qv3uH QVIYH.
= Y3dAH | | d3dAH | H3dAF d3dAH | | ¥3dAH | |
- 7719 /300 [7219\ 300 Ze8 /300 | 2400\ |
m . _
Z - TT79 ¥08$3004d T-779 40S$300Md l
- 019.$304N0STI 0SSIO0d
. TVOISAHd WILSAS LSOH
-
—
« L3N LY b1 AN LY
& NOLLYIOTIV NOLLYIOOTIV
E b-LLY9 S L-LL9
¢0S3000d

>~ ¥083900%d

!

¢-G09 1-G09
NdOA

Pt deiiwiwieiic el el bbbl weiiniinl eelieiier vl vieiiiebier debivelec e el el oot bl bl cbieiiee dmierinik e e i

7709 JONVLSNI

£ 709 JONVLSN]

¢ 709 4ONVLSNI

708 JONVLSNI

¢09 5155300ad WALSAS LSOH

U.S. Patent

US 12,373,252 Bl

Sheet 7 of 15

Jul. 29, 2025

U.S. Patent

. ‘Old
B e

| SR 1| [RS——

lal (8] . [8]a]eldjala]a]dg]| 00

- o] [o TvTwlololvv]v[iaws

NOILYZILINOMd D T e
$S3004d (5) (1) SLHOIIM NOILYZILIMOMd $$300¥d
JLVINO VD S THOEM NOLLYZI L MOM- ONISN JNIL HOSSIO0Hd ILVOO TV
(¢ SSI00Yd HLIM
431NAIHOS ILYAdN
wommz 127 0 vy0L L V0L
. ey d JONVLSNI 9 IONVLSNI
4O

_

. | 7907 507

0c} (2 4 JONVISN ¥ JONVLSN
J0INI3S SOIMLIAN FOVSN — _
INIWIOVYNYIN WILSAS L1SOH JONY SN NIV 160 7 ¥437Na3HOS ﬂ (SIONVISNITIEVIS¥NE
S183NOIY INIL
H0SS3ID0Nd —

US 12,373,252 Bl

Sheet 8 of 15

Jul. 29, 2025

U.S. Patent

/18 d3 1NAIHOS

818 618
3N3N0O 3 1dVN-

11Vd NIVEd NIAO

ALIOVAVYO u_xozmu_wﬂv

41va 114 NIXOL

ANHLIZOD IV LIXNONd NIAOL
VIA 1041NOO F1dVNL F 1dNVXS

h——_—_—_—_—_

8 OlId

18 N4LSAS 1SOH

08
V JONVLISNI

SNI A'1av.Lsand (LINI-140S,

ANI1d5VE %01
15dNd AANIVLSNS %S¢

15dNd Xvdd %001

668
NOILaldOoSdd
JONVLSNI
11dv.1SdNd

3 1diNV X

U.S. Patent Jul. 29, 2025 Sheet 9 of 15 US 12,373,252 B1

OPERATIONS
900

s

EXECUTING, BY A HOST COMPUTER SYSTEM OF A PROVIDER NETWORK, A
PLURALITY OF BURSTABLE PERFORMANCE COMPUTE INSTANCES, WHEREIN AT
LEAST TWO OF THE PLURALITY OF BURSTABLE PERFORMANCE COMPUTE

INSTANCES HAVE DIFFERENT SIZES
202

OBTAINING, FROM THE HOST COMPUTER SYSTEM, COMPUTE CAPACITY USAGE
DATA, THE COMPUTE CAPACITY USAGE DATA INCLUDING A FIRST INDICATION OF
A FIRST COMPUTE CAPACITY USED BY A FIRST BURSTABLE PERFORMANCE
COMPUTE INSTANCE OF THE PLURALITY OF BURSTABLE PERFORMANCE
COMPUTE INSTANCES OVER A HIRST PERIOD OF TIME

904

CALCULATING A FIRST WEIGHT FOR THE FIRST BURSTABLE PERFORMANCE
TE INSTANCE, WHEREIN THE FIRST WEIGHT 15 INVERSELY RELATED TO
THE FIRST COMPUTE CAPACITY

906

UPDATING A SCHEDULER OF THE HOST COMPUTER SYSTEM WITH A PLURALITY
OF PROCESS PRIORITIZATION WEIGHTS, THE PLURALITY OF PROCESS
PRIORITIZATION WEIGHTS INCLUDING A FIRST PROCESS PRIORITIZATION
WEIGHT THAT IS BASED AT LEAST IN PART ON THE FHIRST WEIGHT
908

ALLOCATING, BY THE SCHEDULER AND OVER A SECOND PERIOD OF TIME, AT
_EAST AFIRST PORTION OF A TOTAL COMPUTE CAPACITY OF THE HOST
COMPUTER SYSTEM TO THE FIRST BURSTABLE PERFORMANCE COMPUTE
INSTANCE BASED AT LEAST IN PART ON THE FIRST PROCESS PRIORITIZATION
WEIGHT
910

FIG. 9

—
as ._ .
~ 51078 0} "OId ™
) J3INIVILSNOD, \oe 7 T TS
e p L R T O Ll P W TN
I~ .xsﬁ«mmﬂwwx_ﬂhﬁwak;mﬁ_ N, e o “w Py
6 o7 TR D T e s Ay, >~
" TRy , 2158 Py | $i311% _
— s S g 1 7T e R THY T 31015 1078
R <7 Sl)y avea)
- ﬁmﬁimﬂw@] , S affii i NILSAS
S L w . ? X i !
sireicifiids | _ 3320 1580
umm.“wmmmmmm 2 g w._IQl_w !
ﬁmﬁ“ y 0 0 v/ odve | . a3sn
J3NVEISNOD T3SA JWAVIVAV -~ J7I5 ISOH i

; TTOF NOILYN WA INIVHLSNOO ¥3 L4V | (TTTTTTTT T \

— V.1vad 3OVSN LOTS LSOH | | 0 Z Z 0 “

T e e e e s d | 0 4 4 d _

S " 0 0 _V v 08v6|

= 4 b0 v O GINVIISNOO TSN JTVIVAV -~ 3715 ISOH

2 | a0 9 1 | TTOT NOILYN VAT INIVHLSNOO 340439 |

7 “ 07 A N _.. V1v¥Q 39vYSN 10718 LSOl .,._

| RO T76 AN T T T T T T T T T T T T T T oo
| 371404 | AN \ -7
| e

Te , P

- -

- -

-

Q 57

—_ S314048d 3DVSN || ST L0 IOVSN OIS

= 304N0SIY 3OUNOSIH V.1va LSOl

JONVLSNI

VIvQ ISOH NI S1O1S
== (JANIVELSNOO 41N

00

~
m v | o1t ViVQ A9VSN LO1S NIVLHO
~
S FOINAAHS INJWADYNYIN JOINHES
al ALIOYdYO INAAHAOY Id INOLIYNINHT L
. _ ININFOYId D3
m iiiiiiiiiiii ~p | SANOHH AAIH403

L OIld

US 12,373,252 Bl

(s
| 40<-84 8/9G "
_ OV<-AX vECl |
| JIVIdNZL dIW31ISAS 1SOH |
| S3.1vadn _
\r; _,, V1A NOILYENOIANOD WILSAS
e ot —
< T - 9¢1 (S)3401S V1va
—_
@ e 01T
e
7 viva1soH | | VYO LSYO3O:
\f,
=, V1vQ @
) 1SOH 3.Lvadn
2 S1399Y1 1004
. 133 OL NOILVENSIANOD
E 13374 M3AN ANINY3133

51494V
100d 14S

&

¢hil
d49VNVIA
ONIONV Vd-4d L4414

8l
JOINY3S ()
ONINOYd LSOH

SALVIdAAL WIINDLOd 174

U.S. Patent

dADVNVIA 100d

vOlL 1

v1v(d 100d

OLL1

NIY.L80 LSOH Y 04 JOIAAAS INJWIDVNYIN ALIOVAVO

UANIVELSNOO ddsn F1gvIVAY V.10 VAR
V1vd 41V1S 100d AdV laNdX

)

0§ 00V 09 061 0 |
001 00l 00/ 006 g _
Vo

_

|

|
|
|
“ GC 00¢ Gl 0Gt
|
|

e A il
- nt
i,

V.1vVQ3 ANVIAAQ

ANV 41V1S 100d ONILSIX
NO d4SVa 1394V 100a
(U41vadN INING3 130

all

O = B INER
NIWIOV1d

od1lvddn 1018
UINIVALSNOOD NIVLEO

U.S. Patent Jul. 29, 2025 Sheet 12 of 15 US 12,373,252 B1

OPERATIONS
1200

y

EXECUTING, BY A HOST COMPUTER SYSTEM OF A CLOUD PROVIDER NETWORK,
A FIRST BURSTABLE PERFORMANCE COMPUTE INSTANCE HAVING AN

ASSOCIATED FIRST BASELINE COMPUTE PERFORMANCE LEVEL, WHEREIN TH
FIRST BURSTABLE PERFORMANCE COMPUTE INSTANCE IS ABLE TO USE AT

LEAST A PORTION OF A COMPUTE CAPACITY READROOM OF THE HOST
COMPUTER SYSTEM TO EXCEED THE FIRST BASELINE COMPUTE PERFORMANC
LEVEL

1202

CALCULATING A TOTAL BASELINE COMPUTE PERFORMANCE LEVEL OF A
PLURALITY OF BURSTABLE PERFORMANCE COMPUTE INSTANCES HOSTED BY
[HE HOST COMPUTER SYSTEM, WHEREIN THE PLURALITY OF BURSTABLE
PERFORMANCE COMPUTE INSTANCES INCLUDES THE FIRST BURSTABLE
PERFORMANCE COMPUTE INSTANCE, AND WHEREIN THE TOTAL BASELIN
COMPUTE PERFORMANCE LEVEL IS BASED AT LEAST IN PART ON THE FIRST

BASELINE COMPUTE PERFORMANCE LEVEL
1204

DETERMINING THAT A DIFFERENCE BETWEEN A COMPUTE RESOURC
ILIZATION OF THE HOST COMPUTER SYSTEM AND THE TOTAL BASEL
COMPUTE PERFORMANCE LEVEL IS BELOW A THRESHOLD
1206

UPDATING A STATUS IDENTIFIER ASSOCIATED WITH A PORTION OF COMPUTE

CAPACITY OF THE HOST COMPUTER SYSTEM TO RESERVE THE PORTION OF
COMPUTE CAPACITY OF THE HOST COMPUTER SYSTEM, WHEREIN THE
RESERVED PORTION OF COMPUTE CAPACITY CONTRIBUTES TO THE COMPUT
CAPACITY HEADROOM
1208

FIG. 12

U.S. Patent Jul. 29, 2025 Sheet 13 of 15 US 12,373,252 B1

RESOURCE INSTANCES 1312 g
|
LOCAL IP
_ PUBLIC-TO- ADDRESS(ES) 1316 | o®
PROVIDER -OCAL '
NETWORK "ig WORK _
1300 y A;ﬁ\]sé’ PUBLIC IP
ADDRESS(ES) 1314
VIRTUALIZATION

SERVICE(S) 1310

OTHER
NETWORK
ENTITIES
1320
TERMEDIATE
NETWORK
1340
~
s ‘\
// \'\
// \\
/’ S
y ~
/ ™
7 N
- N T
/ ol V N T~ N / - W N ‘""\
”~ T P —
. CUSTOMER) (. CUSTOMER)
e NETWORK <\ /"~ NETWORK *-\
p 13508 / \ . 1350C J
o - “~ -

CUSTOMER
NETWORK
13950A

CUSTOMER
DEVICE(S) 1352

FIG. 13

U.S. Patent Jul. 29, 2025 Sheet 14 of 15 US 12,373,252 B1

. (VIRTUALIZED) DATASTORE | COMPUTE

a 1416 RESOURCES 1424

. |STORAGE | ¢ |STORAGE | COMPUTE

| 1418 118N | INSTANCES
PROVIDER | 1425
NETWORK |

HARDWARE VIRTUALIZATION
STORAGE SERVICE 1410 SERVICE 1420

rprpyyiinbnkihihhdel

API(S) 1402

NTERMEDIATE
NETWORK
1440

inipdpn. VIV TR TR
.-iﬂi"" m_

r:'h- u—:\
j T l
[LOCAL (VIRTUALIZED),
, STORAGE
| Mm]
..f, “““““““““
”
»”
”
LOCAL
NETWORK
1456
CUSTOMER
DEVICE(S) 1490 ~
(T |
o 1 SOl VIRTUAL
| , W COMPUTING :
; CONSOLE 149 : | SYSTEM(S) 1492
b s e e s s o o o

CUSTOMER NETWORK 1450

FIG. 14

U.S. Patent Jul. 29, 2025 Sheet 15 of 15 US 12,373,252 B1

COMPUTER SYSTEM 1500

| I
PROCESSOR | PROCESSOR | '

- | PROCESSOR |
1510A 15108 - 151N |
.____+___....'___+____'
/0 INTERFACE(S) 1530
P

SYSTEM MEMORY 1520 Y ___ vy :

: : OFF| OAD : ETWORK ;

CODE DATA | | |1 _CARD(S) 1570A | FREACES) | |

1525 1626 | PROCESSOR(S) | — |

(i 1575 H |

ll_'—:..._—....—.......—.......—;_—.._—.;ll 15708 |

NETWORK(S)
1550

ELECTRONIC D

1560

FIG. 15

US 12,373,252 Bl

1

MANAGING FAIRNESS OF RESOURCE
SCHEDULING FOR PERFORMANCE
BURSTING IN MULTI-TENANT
ENVIRONMENTS

BACKGROUND

Cloud computing environments often provide on-de-
mand, managed computing resources to customers. Such
computing resources (e.g., compute and storage capacity)
are often provisioned from large pools of capacity installed
in data centers. Customers can request computing resources
from the “cloud,” and the cloud can provision compute
resources to those customers. Technologies such as virtual
machines and containers are often used to allow customers
to securely share capacity of computer systems.

BRIEF DESCRIPTION OF DRAWINGS

Various examples 1n accordance with the present disclo-
sure¢ will be described with reference to the following
drawings.

FIG. 1 1s a diagram 1illustrating an environment for
managing cloud computing resources with burstable pertfor-
mance instances according to some examples.

FIG. 2 1s a diagram 1illustrating aspects of exemplary
burstable performance instance sizes according to some
examples.

FIG. 3 1s a diagram 1illustrating a technique for divvying
up host system resources for instances and tracking host
system resource usage according to some examples.

FIG. 4 1s a diagram illustrating performance metrics
gathering from host systems and various other operations
according to some examples.

FIG. § 1s a diagram 1illustrating aspects of placing
burstable performance instances on cloud computing
resources according to some examples.

FIG. 6 1s a diagram 1illustrating host system resource
sharing between burstable performance 1nstances according
to some examples.

FIG. 7 1s a diagram 1illustrating aspects of burstable
performance instance prioritization by a scheduler of a host
system according to some examples.

FIG. 8 1s a diagram illustrating additional aspects of
burstable performance instance prioritization by a scheduler
of a host system according to some examples.

FIG. 9 1s a flow diagram illustrating operations of a
method for burstable performance instance scheduling
according to some examples.

FIG. 10 1s a diagram 1llustrating aspects of host system
heat management with burstable performance instances
according to some examples.

FIG. 11 1s a diagram 1illustrating aspects of host system
fleet management with burstable performance instances
according to some examples.

FIG. 12 1s a flow diagram illustrating operations of a
method for host system heat management according to some
examples.

FIG. 13 illustrates an example provider network environ-
ment according to some examples.

FIG. 14 1s a block diagram of an example provider
network that provides a storage service and a hardware
virtualization service to customers according to some
examples.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 15 1s a block diagram 1llustrating an example com-
puter system that can be used in some examples.

DETAILED DESCRIPTION

The present disclosure relates to methods, apparatus,
systems, and non-transitory computer-readable storage
media for burstable performance instances hosted on multi-
tenant infrastructure, such as compute instances 1 a cloud
computing environment. Burstable performance instances
(or “burstable mstances,” sometimes referred to as burstable
virtual machines (VMs) or shared-core VMs) are an instance
type that has a dynamic resource footprint on the underlying
hardware resources of a host computer system. Traditional
compute 1nstances are allocated a fixed portion of an under-
lying host computer system’s resources. The compute
instance may or may not use its entire resource allocation,
often resulting 1n host systems being underutilized. Under-
utilization 1n turn causes economic and environmental inet-
ficiencies due to the cost of maintaining underused or idle
capacity. While some other compute instances may be able
to burst, such bursting is traditionally contingent on the
availability of “credits” for that instance, which may be
accumulated over time by operating at or below baseline, or
which may be purchased, for example. The burstable
instances enabled by the present disclosure are “creditless™
by way of one or more techniques including intelligent
placement of sets of burstable instance on the same host
(with or without slots reserved for burst capacity) by pro-
active modeling resource usage, continuous/periodic adjust-
ment of resource scheduler policies on hosts to ensure
fairness of resource scheduling across instances, load bal-
ancing instances across host systems with live migration
based on historical resource usage, and intelligent capacity
management across hosts to incrementally optimize layout
of instances. This creditless bursting can provide an
improved customer experience, as the customer can obtain
the benefits of a burstable istance type without having to
manage (and potentially exhaust) bursting credits.

Customer workloads rarely use a constant level of
resources (€.g., compute, memory, etc.) over their lifetime.
Instead, workloads often have varying degrees of resource
usage over time. For example, rather than have a fixed
compute capacity allocation, burstable instances have a
non-static compute capacity allocation that can be charac-
terized by a baseline performance level and a burst perfor-
mance level. The baseline performance level provides a
guarantee regarding the mimmimum level of performance a
customer using the burstable instance could expect over time
(subject to some high degree of confidence). The burst
performance level provides additional, on-demand capacity
for the customer’s workload to use when needed (subject to
availability).

The ability of customer workloads executed on burstable
instances to dynamically shift their resource usage of (or
footprint on) a host computer system presents numerous
challenges from a cloud resource management perspective.
While the total capacity of a tleet of host computer systems
might be suflicient to meet demand, both the burstable
instances and the underlying host systems remain discrete
components, preventing instantancous, fluid-like shifts of
demand across capacity. When tens or hundreds of thou-
sands of burstable instances are placing dynamic demands
on a fleet of hundreds or thousands of host computer
systems, numerous problems arise when attempting to
ensure 1ndividual host systems have capacity to support
burst demands. These include how to decide on which host

US 12,373,252 Bl

3

system to launch new burstable instances given existing
demands, how to provide some degree ol fairness to
burstable instances hosted on the same host system when
contention for resources occurs, how to reduce or avoid
contention situations from arising, and how to re-shape or
re-balance the fleet of host systems to meet demand while
mimmizing service mnterruptions.

Examples included 1n the present disclosure present solu-
tions to these challenges. Such examples include new con-
straints on host system resource usage to provide sustained
baseline performance guarantees, new placement processes
when determining on which host system to launch a
burstable instance, new scheduling techniques to improve
the fairness of burstable instances hosted on the same host
computer system during times of resource contention, new
techniques to adjust host system availability in response to
the dynamic resource usage of burstable 1nstances, and new
techniques to re-balance availability pools for diflerent
burstable instance types and/or sizes 1n view ol existing
availability.

FIG. 1 1s a diagram illustrating an environment for
managing cloud computing resources with burstable perfor-
mance instances according to some examples. At a high
level, a cloud provider network (also referred to as “provider
network™ or just “cloud”), such as cloud provider network
100, typically refers to a large pool of accessible virtualized
computing resources (such as compute, storage, and net-
working resources, applications, and services). A cloud can
provide convenient, on-demand network access to a shared
pool of configurable computing resources that can be pro-
grammatically provisioned and released 1n response to cus-
tomer commands. These resources can be dynamically pro-
visioned and reconfigured to adjust to variable load. Cloud
computing can thus be considered as both the applications
delivered as services over a publicly accessible network
(c.g., the Internet, a cellular communication network) and
the hardware and software 1n cloud provider data centers
that provide those services.

A cloud provider network can be formed as a number of
regions, where a region 1s a geographical area 1n which the
cloud provider clusters data centers. Each region includes
multiple (e.g., two or more) availability zones (AZs) con-
nected to one another via a private high-speed network, for
example a fiber communication connection. An AZ (also
known as a “zone”) provides an 1solated failure domain
including one or more data center facilities with separate
power, separate networking, and separate cooling from those
in another AZ. A data center refers to a physical building or
enclosure that houses and provides power and cooling to
servers of the cloud provider network. Preferably, AZs
within a region are positioned far enough away from one
another so that a natural disaster (or other failure-inducing
event) should not aflect or take more than one AZ oflline at
the same time.

Users can connect to an AZ of the cloud provider network
via a publicly accessible network (e.g., the Internet, a
cellular communication network), e.g., by way of a transit
center (TC). TCs are the primary backbone locations linking
users to the cloud provider network and can be collocated at
other network provider facilities (e.g., Internet service pro-
viders (ISPs), telecommunications providers) and securely
connected (e.g., via a VPN or direct connection) to the AZs.
Each region can operate two or more TCs for redundancy.
Regions are connected to a global network which includes
private networking infrastructure (e.g., fiber connections
controlled by the cloud provider) connecting each region to
at least one other region. The cloud provider network can

10

15

20

25

30

35

40

45

50

55

60

65

4

deliver content from points of presence (or “POPs™) outside
of, but networked with, these regions by way of edge
locations and regional edge cache servers. This compart-
mentalization and geographic distribution of computing
hardware enables the cloud provider network to provide
low-latency resource access to users on a global scale with
a high degree of fault tolerance and stability.

Exemplary resources oflered by a cloud provider network
include a variety of types of computing-related resources
such as compute resources (e.g., executing virtual machine
(VM) 1nstances and/or containers, executing batch jobs,
executing code without provisioning servers), data/storage
resources (€.g., object storage, block-level storage, data
archival storage, databases and database tables, etc.), net-
work-related resources (e.g., configuring virtual networks
including groups of compute resources, content delivery
networks (CDNs), Domain Name Service (DNS)), applica-
tion resources (e.g., databases, application build/deployment
services), access policies or roles, 1dentity policies or roles,
machine 1mages, routers and other data processing
resources, etc. These and other computing resources can be
provided as services, such as a hardware virtualization
service that can execute compute mstances, a storage service
that can store data objects, etc.

The users (or “customers™) of provider networks 100 can
use one or more user accounts that are associated with a
customer account, though these terms can be used somewhat
interchangeably depending upon the context of use. Users
can interact with a provider network 100 across one or more
intermediate networks (e.g., the internet) via one or more
interface(s), such as through use of application program-
ming interface (API) calls, via a console implemented as a
website or application, etc. An API refers to an interface
and/or communication protocol between a client and a
server, such that 11 the client makes a request 1n a predefined
format, the client should receive a response 1 a speciific
format or mitiate a defined action. In the cloud provider
network context, APIs provide a gateway for customers to
access cloud infrastructure by allowing customers to obtain
data from or cause actions within the cloud provider net-
work, enabling the development of applications that interact
with resources and services hosted in the cloud provider
network. APIs can also enable diflerent services of the cloud
provider network to exchange data with one another. The
interface(s) can be part of, or serve as a front-end to, a
control plane of the provider network 100 that includes
“backend” services supporting and enabling the services that
can be more directly offered to customers.

To provide the above and other computing resource
services, cloud provider networks 100 often rely upon
virtualization techniques. For example, virtualization tech-
nologies can provide users the ability to control or use
compute resources (e.g., a “compute instance,” such as a
VM using a guest operating system (O/S) that operates using
a hypervisor that might or might not further operate on top
of an underlying host O/S, a container that might or might
not operate 1n a VM, a compute instance that can execute on
“bare metal” hardware without an underlying hypervisor),
where one or multiple compute resources can be i1mple-
mented using a single electronic device. Thus, a user can
directly use a compute resource (e.g., provided by a hard-
ware virtualization service) hosted by the provider network
to perform a variety of computing tasks. A “hosted” resource
1s typically a resource, such as a compute instance, executed
by or on one or more computer systems of the cloud provider
network, which may be sited 1n a data center of the cloud
provider network operator but also located on-prem or in

US 12,373,252 Bl

S

facilities between such a data center and an end user or
customer. Additionally, or alternatively, a user can indirectly
use a compute resource by submitting code to be executed
by the provider network (e.g., via an on-demand code
execution service), which 1n turn uses one or more compute
resources to execute the code-typically without the user
having any control of or knowledge of the underlying
compute instance(s) mvolved.

The hardware virtualization service 112 (referred to in
various 1mplementations as an elastic compute service, a
virtual machines service, a computing cloud service, a
compute engine, or a cloud compute service) can enable
users of the provider network 100 to provision and manage
compute resources (also referred to generally as compute
instances). For example, virtual machine technology can use
one physical server to run the equivalent of many servers
(cach of which i1s called a virtual machine), for example
using a hypervisor, which can run at least on an offload card
of the server (e.g., a card connected via PCI or PCle to the
physical CPUs) and other components of the virtualization
host can be used for some virtualization management com-
ponents. Such an offload card of the host can include one or
more CPUSs that are not available to user instances, but rather
are dedicated to instance management tasks such as virtual
machine management (e.g., a hypervisor), input/output vir-
tualization to network-attached storage volumes, local
migration management tasks, instance health monitoring,
and the like). Virtual machines are commonly referred to as
compute instances or simply “instances.” As used herein,
provisioning a virtual compute instance generally mcludes
reserving resources (e.g., computational and memory
resources) of an underlying physical compute instance for
the client (e.g., from a pool of available physical compute
instances and other resources), installing or launching
required software (e.g., an operating system), and making,
the virtual compute instance available to the client for
performing tasks specified by the client.

In some examples, the execution of compute instances 1s
supported by a lightweight wvirtual machine manager
(VMM). These VMMs enable the launch of lightweight
micro-virtual machines (micro VMs) 1n non-virtualized
environments in fractions of a second. These VMMs can
also enable container runtimes and container orchestrators to
manage containers as micro VMs. These micro VMs nev-
ertheless take advantage of the security and workload 1so0-
lation provided by traditional VMs and the resource efli-
ciency that comes along with containers, for example by
being run as 1solated processes by the VMM. A microVM,
as used herein, refers to a VM mitialized with a limited
device model and/or with a minimal OS kernel that is
supported by the lightweight VMM, and which can have a
low memory overhead of <5 MiB per microVM such that
thousands of micro VMs can be packed onto a single host.
For example, a microVM can have a stripped down version
of an OS kemel (e.g., having only the required OS compo-
nents and their dependencies) to minimize boot time and
memory footprint. In one implementation, each process of
the lightweight VMM encapsulates one and only one
microVM. The process can run the following threads: API,
VMM and vCPU(s). The API thread is responsible for the
API server and associated control plane. The VMM thread
exposes a machine model, minimal legacy device model,
microVM metadata service (MMDS), and VirtlO device
emulated network and block devices. In addition, there are
one or more vCPU threads (one per guest CPU core).

In some examples, the execution of compute instances 1s
supported by containers. A container service (not shown)

10

15

20

25

30

35

40

45

50

55

60

65

6

can be a container orchestration and management service
(referred to 1n various implementations as a container ser-
vice, cloud container service, container engine, or container
cloud service) that allows users of the cloud provider
network to instantiate and manage containers. In some
examples the container service can be a Kubernetes-based
container orchestration and management service (referred to
in various implementations as a container service for Kuber-
netes, Azure Kubernetes service, IBM cloud Kubernetes
service, Kubernetes engine, or container engine for Kuber-
netes). A container, as referred to herein, packages up code
and all 1ts dependencies so an application (also referred to as
a task, pod, or cluster 1n various container services) can run
quickly and reliably from one computing environment to
another. A container 1mage 1s a standalone, executable
package of software that includes everything needed to run
an application process: code, runtime, system tools, system
libraries and settings. Container 1mages become containers
at runtime. Containers are thus an abstraction of the appli-
cation layer (meaning that each container simulates a dii-
terent software application process). Though each container
runs 1solated processes, multiple containers can share a
common operating system, for example by being launched
within the same wvirtual machine. In contrast, wvirtual
machines are an abstraction of the hardware layer (imeaning,
that each virtual machine simulates a physical machine that
can run soitware). While multiple virtual machines can run
on one physical machine, each virtual machine typically has
its own copy of an operating system, as well as the appli-
cations and their related files, libraries, and dependencies.
Some containers can be run on instances that are runnming a
container agent, and some containers can be run on bare-
metal servers, or on an offload card of a server.

Traditional 1instances are typically advertised as a fixed set
of resources a user can expect to have available. For
example, a traditional 1nstance of a particular type and size
might have 1 vCPU, 2 gigabytes of memory, and 100
megabits/second of network bandwidth. These different
resources ol an instance may be represented internally by a
cloud provider network as a “resource vector.” In contrast to
traditional instances, burstable performance instances (or
“burstable 1nstances”) have a “baseline” performance char-
acteristic for a given resource that provides an expected
sustained level of performance and a “burst” performance
characteristic for the resource that provides a degree to
which the instance can consume additional resources and
typically also includes an expected burst availability.
Although the balance of this disclosure focuses on compute
capacity as the “bursting” resource for ease of explanation,
the burst concepts disclosed herein can be extended to other
resources like memory, network throughput, etc.

As 1llustrated in FIG. 1, example burstable 1nstance sizes
199 graphically illustrate a small, medium, and large
burstable instance sizes specified using the above nomen-
clature along one dimension of a resource vector (compute
capacity). For reference, the compute capacity of a virtual
processor (vCPU) 1s also shown. The large burstable
instance size has a 40% vCPU baseline with up to a 100%
vCPU burst, the medium burstable instance size has a 20%
vCPU baseline with up to a 50% vCPU burst, and the small
burstable mstance size has a 10% vCPU baseline with up to
a 25% vCPU burst. In some examples, burst availability can
be qualified as the typical availability over some period of
time (e.g., 95% availability over 24 hours). In some
examples, burst 1s a sustained burst value. In such cases,
instances with a sustained burst of below 100% vCPU (e.g.,

US 12,373,252 Bl

7

a small with a 25% vCPU burst) burst can still burst up to
100% vCPU usage for a limited period of time.

A vCPU represents an abstraction of the underlying
physical processor or processor components allocated to
instances on host systems. In some cases, 1nstances can be
advertised based on their actual physical compute unit
instead of using the vCPU abstraction (e.g., a baseline of
40% of a core of a particular multi-core processor). Addi-
tional details regarding the relation between vCPUs and the
underlying physical hardware of a host system are illustrated
and described at least with reference to FIG. 6.

A customer or user of the provider network can send a
request to launch a burstable instance to the hardware
virtualization service 112 via an electronic device 102 and
an interface such as an API (not shown) to the cloud provider
network 100. The request can include an indication of the
type and possibly size of the mstance to launch. Using the
example 1nstance sizes 199 1illustrated, a request might
indicate a launch of a “small” size burstable performance
instance.

A fleet of host computer systems 114 composed of many
individual host computer systems (or “host systems™) 115-1
through 115-N provides the capacity on which to launch
compute instances.

As explained above, the hardware virtualization service
112 can enable users of the provider network 100 to provi-
sion and manage compute resources, including burstable
instances. In servicing a launch request, the hardware vir-
tualization service 112 can send a request to a placement
service 116, the request for an 1dentification of one or more
candidate host systems 115 on which to configure and
launch the burstable instance. The placement service 116 can
improve fleet 114 utilization by providing candidate host
system(s) 115 based at least 1n part on existing resource
usage of host systems and expected or anticipated resource
usage of the burstable mstance to be launched. Additionally,
the placement service 116 can impose limits on the launch
of new 1nstances on particular host systems 115 when actual
usage exceeds expected usage. In eflect, the placement
service 116 provides a degree of heat management by
intelligently controlling the distribution of burstable
instance workloads across the fleet. Additional details
regarding the placement service 116 are illustrated and
described at least with reference to FIGS. 5 and 10.

A host packing service 118 can generate templates for
host systems 115. Templates serve to logically divide a host
system’s available resources 1mto “slots,” where each slot
represents capacity for a given instance type and size. For
example, a template might divide a particular host system’s
resources into slots for two “large” burstable 1nstances, two
“medium” burstable instances, and two “small” burstable
instances. In this manner, templates can thus be used to
reserve portions of resources of the host system fleet for
certain 1nstance type and size combinations and to control
the density by which hosts are “packed” onto host systems.
The association between host systems 115 and a template
can be stored 1n data store(s) 126.

Slots can be assigned various indicators to track the state
of the associated resources. For example, an “available”
state can 1ndicate that a slot 1s available while a “used” state
can indicate the slot 1s occupied by a compute instance.
Various components ol the cloud provider network can use
the slots defined by a host system’s template to track and
manage both discrete capacity within a host and aggregate
capacity across the tleet as described herein. The status of
slots defined by a template associated with a given host
system 115 can be stored 1n the data store(s) 126. Additional

5

10

15

20

25

30

35

40

45

50

55

60

65

8

details regarding templates and slots are illustrated and
described at least with reference to FIG. 3.

The hardware virtualization service 112 can send update
requests to the placement service 116 for changes to instance
status. The placement service 116 can use such updates to
track resource usage of host systems 115. For example, 11 an
instance 1s terminated (whether due to a user-request, a live
migration, etc.), the hardware virtualization service 112 can
send an update request to the placement service 116 to
indicate that a particular mstance 1s no longer running. The
placement service 116 can update the associated slot status
accordingly (e.g., changing a slot’s status from “available™
to “used” when an instance 1s launched and vice versa when
an instance 1s terminated).

The host packing service 118 can also provide candidate
templates to associate with host systems 115 to a capacity
management service 124 during fleet rebalancing opera-
tions. Additional details regarding these operations are illus-
trated and described at least with reference to FIG. 11.

A host system management service 120 can collect usage
metrics from individual host systems 115. The host system
management service 120 can also generate various statistical
measures regarding instance resource usage as illustrated
and described at least with reference to FIG. 4. The host
system management service 120 can also provide a degree
ol heat management during contention for host resources by
adjusting the priority given to diflerent instances on a
particular host system by a scheduler as illustrated and
described at least with reference to FIGS. 7 and 8.

In some examples, iI a host system becomes “over-
heated,” the host system management service 120 imtiate
the live migration of an instance hosted on the overheated
host system to another host system via a live migration
service 122.

Migration refers to moving compute instances (and/or
other resources) between hosts 1 a cloud computing net-
work or between hosts outside of the cloud computing
network and hosts within the cloud. There are different types
of migration including live migration and reboot migration.
Techniques for various types of migration involve managing
the critical phase—the time when the virtual machine
instance 1s unavailable to the customer—which should be
kept as short as possible.

During a reboot migration, the customer experiences an
outage and an eflective power cycle of their virtual machine
instance. For example, a control plane service can coordi-
nate a reboot migration worktlow that involves tearing down
the current domain on the original host (the “source”) and
subsequently creating a new domain for the virtual machine
instance on the new host (the “target” or “destination™). The
instance 1s rebooted by being shut down on the original host
and booted up again on the new host.

Live migration refers to the process of moving a running,
virtual machine 1nstance between different physical
machines without significantly disrupting the availability of
the virtual machine instance (e.g., the down time of the
virtual machine instance 1s not noticeable by the end user).
The live migration service 122 manages the live migration
of mstances from a “source” host system 115 to a different
“destination” host system 115. Upon receipt of a live migra-
tion request (e.g., from the host system management service
120), the live migration service 122 can 1ssue a request to a
placement service 116, the request for an i1dentification of
one or more candidate host systems on which to place a
burstable instance of the same type and size being migrated.
The live migration service 122 can select a candidate host
system (“‘destination” host system), 1f multiple, and 1ssue a

US 12,373,252 Bl

9

request to the hardware virtualization service 112 to allocate
and launch an instance of that type and size on the destina-
tion system 1n a paused state (e.g., a new “inactive” domain
associated with the instance 1s created on the target host
system, while the original domain for the instance continues
to run as the “active” domain on the source host). The live
migration service 122 can then cause the state (e.g., vCPU
registers, memory, storage data, network connectivity, etc.)
of the burstable imstance in the “active” domain to be
captured on the source host system, transierred to the
destination host system, and loaded into the corresponding
state data for the instance in the “inactive” domain on the
destination host system. For example, a local migration
manager running on the source host system can send
memory pages to the target host (also referred to as the
“state” of the instance), track changes to the memory pages,
and continue sending the changed pages to the target host.
The 1nstance may be briefly paused to prevent state changes
while transierring a final set of memory contents to the target
host. Thereafter, one or more of the control plane, the local
migration manager, and the hypervisors (on the source and
target hosts) can transition the mactive domain to become
the active domain and demote the original active domain to
become the imactive domain (sometimes referred to as a
“flip™), after which the instance begins running on the target
host, and the 1nactive domain can be discarded.

A capacity management service 124 manages the
resources of the fleet of host computer systems to satisiy
forecasted demand while accounting for the dynamic
resource footprint of burstable instances. One or more layers
of abstraction serve to decouple the particulars of the
hardware configurations of host systems 115 and allow the
capacity management service 124 to divvy up aggregate
resources in the fleet into pools for diflerent type and size
combinations. Using templates and slots, for example, each
host system can have an associated template that divides that
host system’s resources into slots of one or more types and
s1zes. The slots of a given instance type and size can together
form a pool for that instance type and si1ze independent of the
underlying host systems 115 on which those slots are
templated.

The capacity management service 124 allows for pools to
be dynamically adjusted based on demand. Having static
pool sizes risks denying customer requests while capacity
remains unused. For example, consider a case where the
fleet 114 has 700 vCPUs and there are only burstable
instances 1n the example 199 small, medium, and large sizes.
A large burstable instance has a 0.4 vCPU baseline, a
medium burstable instance has a 0.2 vCPU baseline, and a
small burstable instance has a 0.1 vCPU baseline. If baseline
performance 1s the factor by which fleet resources are
divided, 1in one extreme the fleet resources could be divided
into 1,750 slots (700/0.4) for large burstable instances and
zero slots for medium and small burstable instances. If a
customer requested a launch of a small burstable instance,
such a request can fail since there were no available slots for
the small burstable instance despite capacity templated for
large slots remaining unused. A middle-ground approach
that creates equally-sized pools may also be undesired. For
example, the 700 vCPUs could be divided to create a pool
of 1,000 slots for each of the large, medium, and small
burstable mstance sizes. Customer demand 1s typically not
uniform, however, so it the medium burstable instance 1s
more popular, once the 1,000 slots have been used, addi-
tional requests to launch medium burstable instances can fail
despite capacity templated for large and small slots remain-
ing unused.

10

15

20

25

30

35

40

45

50

55

60

65

10

Rather than have static pool sizes, the capacity manage-
ment service 124 reshapes how unused fleet capacity 1s
allocated to pools of diflerent instance types or different size
and type combinations. Such re-shaping (also referred to as
re-balancing) can occur periodically to account for changing
customer demand based upon demand forecasts. In this
manner, the capacity management service 124 can improve
resource ufilization across the fleet. Additional details
regarding rebalancing by the capacity management service
124 are 1llustrated and described at least with reference to
FIG. 11.

Data store(s) 126 store various configuration and tracking,
data used by the other illustrated components as part of
launching burstable instances and managing those burstable
instances and the fleet. Exemplary data includes host data
that associates templates with host systems and tracks slot
state, host system resource usage metrics that provide mea-
sured resource usage levels at the host-level, and instance
resource usage profiles that provide resource usage charac-
terizations of instances at different degrees of detail (e.g., by
specific 1nstance; by particular instance type, size, and
customer; by instance type and size; etc.).

Communications between components 1llustrated within
the cloud provider network 100 are typically carried out via
API. For example, the hardware virtualization service 112
can vend a launch API to the electronic device 102 and the
live migration service 112, the placement service 116 can
vend a placement request API to the hardware virtualization
service 112 and the live migration service 122. The live
migration service can vend a migration API to the host
system management service 120. The host systems 115 can
vend various compute istance creation and launch APIs to
the hardware virtualization service 112 to allow for the
allocation of resource for and the launch of compute
instances. The host systems 115 can also vend various
management APIs (e.g., to collect metrics, to receive
instructions) to the host system management service 120.
The capacity management service 124 can vend APIs to
allow the placement service 116 to tlag slots as constrained
or remove such constraints. The host packing service 118
can vend APIs to allow the capacity management service
124 to obtain candidate templates subject to certain con-
straints during re-balancing operations.

FIG. 2 1s a diagram illustrating aspects of exemplary
burstable performance instance sizes according to some
examples. In particular, FIG. 2 illustrates the relationship
between baseline and burst performance for burstable per-
formance 1nstances. The top portion of FIG. 2 1llustrates an
example set of burstable instances 200 packed onto a host
system. Leveraging the example instance sizes 199, the host
system 1ncludes two “large” burstable 1nstances, six
“medium” burstable instances, and ten “small” burstable
instances. The vertical axis represents the resource utiliza-
tion (in this case, compute) of each instance. While the
advertised baseline performance level for a burstable
instance serves as an approximate floor for worst-case
performance during periods of contention, often burstable
instances will operate below that level. The amount of
headroom provided by some burstable mstances operating
below their baseline performance level 201 provides for the
burst capacity that can be used, as-needed, by other
burstable 1nstances up to their associated burst performance
limit 202. With credit-based bursting, compute instances
could only burst by expending credits, which may be accu-
mulated over time by operating at or below baseline, or
which may be purchased, for example. Burstable instances
as contemplated herein can burst above their associated

US 12,373,252 Bl

11

baseline performance level using the compute capacity
headroom without credits, with the amount of headroom
and/or the apportionment of that headroom managed by the
techniques described herein. As illustrated, one large
burstable instance and one medium burstable instance are
“bursting” using the headroom provided by the remaining
burstable instances operating below their baseline perfor-
mance level.

FIG. 3 1s a diagram 1illustrating a technique for divvying
up host system resources for mstances and tracking host
system resource usage according to some examples. In
particular, templates are a construct that serves to logically
divide a host system’s available resources into “slots” where
cach slot represents capacity for a given instance size. In this
manner, a template represents a particular combination of
one or more slots.

The host packing service 118 can generate templates for
host systems of a particular hardware configuration. In
general, the host packing service 118 can receive a plurality
ol resource vectors describing the various instance types as
well as a resource vector describing the hardware configu-
ration of the host system. The instance type resource vectors
may be pre-defined by the cloud provider network operator
based on workload characterizations of customer instances.
The host packing service 118 can use a bin-packing algo-
rithm to generate various templates with different combina-
tions of instance types and/or sizes.

The particular example of FIG. 3 shows two possible
output templates 308 1n the simple case of a single resource
dimension—compute capacity. To facilitate the provisioning
of baseline performance guarantees for burstable instances,
the example burstable performance instance sizes 302 are
specified using their associated baseline characteristic—0.4
vCPU for the large size, 0.2 vCPU {for the medium size, and
0.1 vCPU for the small size. The resource vector describing
the example host system 304 is represented in similar
units—3 vCPUs. The host packing service 118 can use a
bin-packing algorithm to generate templates that would fit
within the host system subject to optional constraints (e.g.,
zero large slots, exactly three medium slots, etc.), and
typically with the minimal amount of unused allocation. In
some cases, the host packing service 118 can calculate all
possible combinations (e.g., Template X 1s zero large, zero
medium, 30 small; Template Y 1s zero large, 1 medium, 28
small; and so on). The host packing service 118 can store all
generated templates as template data 1n a data store (not
shown).

Template A and Template B represent two ol many
possible outputs. Template A includes two large burstable
instance slots, six medium burstable instance slots, and ten
small burstable mstance slots (corresponding to the example
packing shown in FIG. 2). Template B shows that host
system resources can be divided amongst instances of dif-
ferent types. As 1llustrated, template B includes two large
burstable 1instance slots, five medium burstable instance
slots, two small burstable instance slots, and a slot for
another non-burstable type instance (e.g., a fixed compute
capacity allocation instance of 1 vCPU).

Slots within a template can be enumerated with 1dentifi-
ers. In template A, for example, the large burstable instance
slots are numbered 1 and 2, the medium burstable instance
slots are numbered 3 through 8, and the small burstable
instance slots are numbered 9 through 18. Host data (not
shown) can track, per-host, the current template associated
with the host and the availability of the slots described by
that template (e.g., used, available, etc.). A tuple including a

10

15

20

25

30

35

40

45

50

55

60

65

12

host system 1dentifier and a slot 1dentifier can be used to
locate slot status (e.g., used, available) 1n host data, for
example.

As mentioned above, 1instances of different sizes can be
represented using a “resource vector’” based on their instan-
tiated resource allocation. Similarly, host systems can be
described 1n terms of resource vectors based on their physi-
cal resources. The divvying up of resources (compute,

memory, disk, network, etc.) need not be proportional. In
other words, while slot 1 of template A accounts for ~13%
of the compute capacity of the host system (1.e., 0.4 vCPUs
out of 3 vCPUs), slot 1 can have a different proportion of the
host systems total memory.

FIG. 4 1s a diagram illustrating performance metrics
gathering from host systems and various other operations
according to some examples. In most modern computer
systems, processor time 1s divided 1nto time slices. A sched-
uler 1s responsible for allocating those time slices amongst
entities (processes, typically) competing for processor time.
Processes requesting processor time typically enter a queue.
Before the start of each time slice, the scheduler will select
one or more processes from the queue to be granted pro-
cessor time 1n that time slice. As indicated at circle 1, a
scheduler 417 of a host system 415 will schedule or pin
processes to the processor for the next time slice. In this
example, the processor 1s a multi-core processor with two
cores, and three processes A, B, and C sharing processor
time. As indicated at circle 1, the far night time slice,
representing time slice t, has yet to be allocated. Previously,
at time slice t—1, process A was allocated both cores, at time
slice -2, process B was allocated both cores, at time slice
t—3, process A was allocated core 1 and process C was
allocated core 2, and so on.

In the case of burstable instances, each burstable instance
can correspond to a process. Details of compute allocation

and scheduling techmiques for burstable instances are 1llus-
trated and described at least with reference to FIGS. 6
through 8.

Besides scheduling processes, the scheduler 417 can also
track various metrics representing compute usage, as indi-
cated at circle 2. Such metrics typically include one or more
metrics related to track per-instance compute usage and one
or more metrics to track overall compute usage. Per-instance
compute usage can be reported per-core or aggregated
across cores. Overall compute usage might be tracked per-
core, per-processor (having multiple cores), per-NUMA
(non-uniform memory access) node, etc. Metrics can be
tracked in relative or absolute terms (e.g., as a percentage of
time or time slices, or as a total number of time or time
slices).

As 1ndicated at circle 3, the host system management
service 120 can obtain usage metrics from host systems such
as the host system 4135. Such an operation may be performed
regularly as part of a scheduler update workilow (see FIG.
7). Usage metrics typically represent usage data since the
last time the host system management service 120 obtained
usage metrics. An exemplary set of metrics provided in
object notation 1s shown below.

{

timestamp = “2021-06-15T07:58:36.0012”
poolmetrics = {

1= |

pool_id = # The NUMA node number
cpu_util_us = # the sum of system time, instance time
and forced-idle time

US 12,373,252 Bl

13

-continued

forced_idle_us = # Total time instances spent waiting
cpu_count = 64

I
2 =1
h
h
instancemetrics = {
1 ={
instanceid = # Instance identifier
slotid = # Slot 1dentifier
cpu_used_us = # Aggregate time used by instance on each cpus
idle_us = # Aggregate time 1dling
walting_time_us = # Aggregate time waiting
|
2 =1
h
h

As idicated at circle 4, the host system management
service 120 can update (or create, 1f none exists) a host
system resource usage profile 430 for the host system 415 1n
the data store 126. For example, the host system manage-
ment service 120 can calculate a statistic related to the
utilization of core, processor, pool, and/or other division of
host physical compute resources, which may be based upon
on previously stored metrics. For example, an average
utilization can be computed based on the most recent set of
metrics and those previously obtammed within the last
24-hour period. Such a statistic can be expressed in vCPU
units (e.g., average ol 5 vCPUs used out of 10 total vCPUSs).

As imdicated at circle 5, the host system management
service 120 can update (or create, 1f none exists) an istance
usage profile 432 for an instance (e.g., instance A, B, and/or
C) 1n the data store 126. Various statistics can be calculated
characterizing an instance or instances at different levels of
abstraction, such as indicated by the example usage profile
types 433. For example, a usage profile of a specific instance
(e.g., one launched from a particular pre-defined machine
image resulting 1n a somewhat predictable workload) can be
calculated (e.g., by averaging previously collected metrics
for that instance). A usage profile of all of a customer’s
instances ol a particular type and size can be calculated (e.g.,
by averaging metrics collected for all imstances of a given
type and size of a particular customer). A usage proiile of all
instances ol a particular type and size can be calculated (e.g.,
by averaging metrics collected for all mstances of a given

type and size). A default usage profile can correspond to the
expected utilization of an associated burstable nstance size
(e.g., 0.1 baseline vCPU {for small, 0.2 baseline vCPU for
medium, 0.4 baseline vCPU for large). An example usage
profile 434 of any type can include one or more statistics,
such as an average utilization and peak burst, which again
can be expressed 1n terms of vCPU units.

Note that the obtaining of metrics (circle 3), the updating
of host system resource usage profiles (circle 4), and the
updating of mstance resource usage profiles (circle 5) by the
host system management service 120 can be independent
workilows. In other words, the obtaining of metrics from a
host system need not trigger the updating of usage profiles.
Metrics might be obtained at approximately a {irst interval,
while usage profiles of one or both host system and instances
may be updated based on a schedule, set number of metric
retrievals, etc.

10

15

20

25

35

40

45

50

55

60

65

14

As 1ndicated at circle 6, the host system management
service 120 can mitiate a live migration 1n the event a host
system becomes “overheated.” A live migration policy can
include one or more rules for determining when a host
system 1s “overheated” and how to respond. For example,
the host system management service 120 can determine that
a host system 1s overheated 1f one or more thresholds are
met. For example, a threshold can be based on an average
overall compute resource utilization rising above a value. As
another example, a threshold can be based on the burst
availability for burstable instances hosted on the host system
falling below a value. For example, the host system man-
agement service 120 can obtain the historical or a predicted
peak burst for each of the hosted burstable performance
instances from the mstance usage profiles data 432. The host
system management service 120 can sum the peak burst for
cach instance and compare whether that total 1s greater than
some threshold above the total vCPU capacity of the asso-
ciated host system. In some cases, scale factors can be used
to adjust the metrics being used 1n the threshold comparisons
(e.g., scaling the total peak usage by some value, scaling the
average overall compute resource utilization by some value,
etc.). In some cases, the host system management service
120 may require multiple thresholds to be met before
initiating a live migration.

The live migration policy can further indicate how the
host system management service 120 should respond once 1t
has been determined that a host system has been overheated.
For example, the policy may indicate that the top N
instances with the highest resource utilization should be live
migrated (to reduce the number of live migrations). As
another example, the policy may indicate that the bottom N
instances with the lowest resource utilization should be live
migrated (to reduce interruptions to a “hot” workload). As
yet another example, the policy may randomly select one or
more 1nstances for migration, effectively migrating an “aver-
age” mstance when applied fleet-wide. Based on the policy,
the host system management service 120 can send a request
to the live migration service 122 to initiate a live migration,
the request including the identity of the instance or the
identities of the instances to be migrated.

FIG. 5 1s a diagram illustrating aspects ol placing
burstable performance instances on cloud computing
resources according to some examples. At a high level, the
placement service 116 services placement requests by pro-
viding an indication of the location to launch compute
istances. Such a location can be provided 1n terms of a host
identifier, a host and slot 1dentifier, a set of candidate hosts
(by 1dentifier), or a set of candidate hosts and slots (again, by
host and slot 1dentifiers).

As indicated at circle 1, the placement service 116
receives a placement request from, for example, the hard-
ware virtualization service 112 or the live migration service
122. Such a request typically includes an indication of the
type and possibly size of instance requested to be launched
and can further include an indication of the machine 1image
from which the instance 1s being launched, if any, and/or the
customer on whose behalf the mstance 1s being launched.

As indicated at circles 2A-2C, the placement service 116
obtains data from data store(s) 126 to use to respond to the

request. In particular, the placement service 116 obtains an
initial set of host candidates from the host data 510. For
example, 1f the placement request indicated a medium
burstable 1nstance, the placement service 116 can obtain an
identification of host systems having one or more available
slots for a medium burstable instance.

US 12,373,252 Bl

15

As a simplified example, assume the host system fleet has
two host systems 1dentified as 1234 and 5678. Example slot

usage data of the two host systems can be stored 1n host data
510 as follows.

HOST TYPE SIZE AVAILABLE USED

1234 BURNT SMALL 0 4
BURNST MEDIUM S 1
BURNT LARGE 1 1

5078 BURNST SMALL 4 0
BURNT MEDIUM 3 2
BURNST LARGE 3 1

A graphical depiction of this state 1s shown on the right
side of FIG. 5. In this example, both host systems—1234
and 5678—have an available medium slot. Note that 1n some
examples, host data 510 can be stored 1n a queryable
database such that the availability of a slot for a particular
instance type and size can be specified as a parameter 1n the
query. In other examples, another service (not shown) may
vend an API via which the placement service 116 can submit
requests for 1mtial sets of candidates.

As 1ndicated at circle 2A, the placement service 116
obtains an 1nitial set of candidate host systems including
host system 1234 and host system 5678 based on the host
data 510.

As 1ndicated at circle 2B, the placement service 116
obtains a resource usage profile for each of the candidate
host systems 1dentified 1n the mnitial set from the host system
resource usage profiles 430. Here, the host system 1234 has
an average usage of 5.2 out of 6 vCPUs, and the host system
5678 has an average usage of 4.7 out of 6 vCPUSs.

As 1ndicated at circle 2C, the placement service 116
obtains an 1nstance resource usage proiile from the nstance
usage profiles data 432. As described with reference to FIG.
4, instance resource usage profiles data 432 can have dii-
terent profiles at varying degrees of specificity. For example,
some 1nstance resource usage profiles can be associated with
particular instances, others with instances of a particular
type and size of a particular customer, others with 1nstances
of a particular type and size across customers, etc. The
placement service 116 typically obtains the most-specific
instance resource usage profile available based upon the data
included i the placement request. For example, 1 the
placement request included an indication of the machine
image Irom which the instance 1s being launched and an
associated resource usage profile exists, the placement ser-
vice 116 can use that instance-specific usage profile. As
another example, 11 the placement request included an
indication of the customer on whose behalf the instance 1s
being launched, the placement service 116 can obtain a
customer-specific mstance usage profile for mstances of the
type and size of the burstable instance to be launched, i
available. As another example, if the only i1dentification of
the 1nstance 1s its type and size, the placement service will
use the historical usage profile for that type and size of
burstable instance, which, 11 unavailable, will result 1n a
default instance resource usage profile being used.

As 1ndicated at circle 3, the placement service 116 filters
the mitial set of candidate host systems based upon the
obtained resource usage proifile for each of the candidate
host systems and the instance resource usage profile. For
example, the placement service 116 can check whether the
host system resource usage plus the instance resource usage
would exceed some threshold and, if so, eliminate the
corresponding host system as a candidate. As 1llustrated, and

10

15

20

25

30

35

40

45

50

55

60

65

16

assuming a threshold of less than 10% remaining host
capacity, the host system resource usage of host system 1234
plus the 1nstance resource usage exceeds the threshold (.e.,
(5.2+0.4)/6.0—=— 93% capacity) while the host system
resource usage of host system 5678 plus the instance
resource usage does not (1.e., (4.740.4)/6.0=85%). Thus,
host system 5678 would pass the filtering operation.

As mdicated at circle 4, the placement service 116 returns
a response to the placement request. Again, the response can
include a location provided in terms of a host 1dentifier, a
host and slot identifier, a set of candidate hosts (by 1denti-
fier), or a set of candidate hosts and slots (again, by host and
slot 1dentifiers). In this case, the set of host system candi-
dates obtained at circle 2A was filtered to eliminate host
system 1234 at circle 3, resulting 1n a response that includes
an 1dentification of host system 35678 and, optionally, the
available medium slots (e.g., 5, 6, and 7).

I1 the placement service 116 returns a set of candidates 1n
response to a placement request, the placement service 116
can order the set based upon the estimated headroom as
determined during the filtering operation of circle 3. The
recipient service (e.g., the HVS 112 or the LMS ’22) can
select a host from the set from the set (e.g., the first one, 11
an ordered set) and attempt to launch an instance. If the
launch fails for some reason, the service can attempt to
launch an instance on another host in the set, and so on,
reducing repeat queries to the placement service 116. Once
launched, the HVS 112 can send an update request to the
placement service 116 to update the host data 510 to retlect
the changed state of a slot from available to used.

FIG. 6 1s a diagram illustrating host system resource
sharing between burstable performance nstances according
to some examples. Illustrated at the top of FIG. 6 are host
system processes 602, which can correspond to compute
instances such as burstable mstances. Four processes 602-1
through 604-4 are shown, although many more may exist.
Other non-instance processes may exist, too. The instances
604-1 through 604-3 each have a two vCPU allocation
(though the baseline and burst performances are not shown
here). Instance 604-4 has a four vCPU allocation.

Illustrated at the bottom of FIG. 6 are the physical
compute resources of an exemplary host system 610 at one
point 1n time (left) and the same host system 610 at another,
later point 1n time (right). The host system 610 includes one
or more processors 611, each processor being a multiple core
processor having four cores 612-1 through 612-4. Each core
612 supports multi-threading and has two hyper-threads
613-1 and 613-2.

As described above, processing capacity 1s typically
dividing in time into time slices. One or more schedulers 607
allocate physical compute resources to processes during
time slices. In some examples, each processor or group of
processors may have an associated scheduler 607, and each
scheduler may have an associated group of processes 602
that 1t manages on its associated processor or group of
Processors.

As described above, the vCPU serves as an abstraction of
some underlying physical compute units (e.g., hyper-
threads, cores, etc.). Various mappings between a vCPU and
the underlying physical compute units are possible, subject
to the processor architecture. One possible mapping 1s
shown, with vCPUs 605 mapping to hyper-threads 613.

As shown at time t—1, the vCPUSs 605-01 and 605-2 of the
instance 604-1 were executed by the hyper-threads 613-1
and 613-2 of the core 612-2, the vCPUs 605-01 and 605-2
of the instance 604-2 were executed by the hyper-threads
613-1 and 613-2 the core 612-1, the instance 604-3 was

US 12,373,252 Bl

17

either 1dle or forced to wait, and the vCPUs 605-01 through
605-4 of the instance 604-4 were executed by cores the
hyper-threads 613-1 and 613-2 of the core 612-3 and the
hyper-threads 613-1 and 613-2 of the core of the core 612-4.
As shown at time t, the instance 604-1 was either 1dle or

forced to wait, the instance 604-2 continued execution on
core 612-1, the vCPUs 605-01 and 605-2 of the instance

604-3 were executed by the hyper-threads 613-1 and 613-2
of the core 612-2, and the instance 604-4 continued execu-
tion on cores 612-3 and 612-4.

Note that in some examples that use processors support-
ing hyper-threading, the scheduler 607 treats cores as atomic
units to prevent one instance from executing on one hyper-
thread of one core and another instance, possible owned by
another customer, from executing on another hyper-thread
of the same core. Doing so can prevent one customer from
possibly gaining insight into the workload of another cus-
tomer via side-channel attack. To avoid under-utilizing
hyper-thread compute capacity, instances can be allocated an
even number of vCPUs.

FIG. 7 1s a diagram 1illustrating aspects of burstable
performance 1nstance prioritization by a scheduler of a host
system according to some examples. As mentioned above,
burstable instances operating below their baseline perfor-
mance level provide the headroom for other burstable
instances to burst or operate above their baseline perfor-
mance level. A scheduler distributes that headroom, or
excess compute capacity, amongst the competing demands
of burstable instances. To provide a degree of fairness to the
allocation of that headroom, the scheduler uses process
prioritization weights, which the host system management
service 120 updates occasionally (e.g., every second, every
half second, every ten seconds, etc.).

The following example 1s 1illustrative of the process
prioritization weights update workflow. An example host
system 715 includes a scheduler 717 and two cores on which
to execute hosted instances. The scheduler 717 includes a
queue 718 that includes an indication of which processes
(e.g., instances) have requested processor time. The host
system 715 1s host to four burstable instances 704-1 (*A™),
704-2 (“B”), 704-3 (*C”), and 704-4 (“D”). As indicated at
circle 1, the scheduler 717 can evaluate the process priori-
tization weights 719 associated with each enqueuned process
request 1n allocating compute capacity for the upcoming
time slice to determine the order in which to allocate
resources (with any remaining enqueued requests waiting
until at least the next time slice). For example, 1f all four
instances A through D have queued and instances A and B
have higher process prioritization weights than instances C
and D, the scheduler 717 can allocate the two cores to
instances A and B 1n the upcoming time slice. In some cases,
entries 1n the queue can have an associated wait time. The
scheduler 717 can scale the process prioritization weights
719 for a given instance by its associated wait time to
determine resource allocations for a time slice to avoid
starving an instance of compute time.

As 1ndicated at circle 2, the host system management
service 120 obtains per-instance usage metrics, such as
1llustrated and described at least with reference to FIG. 4
(e.g., the “instancemetrics” in the example set of metrics).

As 1indicated at circle 3, the host system management
service 120 calculates updated process prioritization
weights, typically according to a fairness policy 721. An
example process prioritization weights calculation accord-
ing to a policy 721 that prioritizes lower burst utilization
over higher burst utilization instances while protecting each
instance’s baseline performance level follows.

10

15

20

25

30

35

40«

45

50

35

60

65

18

The host system management service 120 determines a
baseline priority weight for each instance. Such a baseline
priority weight can be the product of the baseline perfor-
mance level and the number of vCPUs for a particular
instance. For example, a two vCPU, 10% baseline perfor-
mance level burstable instance would have a baseline pri-
ority weight of 0.2, while a four vCPU, 40% baseline
performance level burstable instance would have a baseline
priority weight of 1.6.

By summing the baseline priority weights (which reflect
a baseline guarantee in vCPUs) of each instance, the host
system management service 120 can determine the total
baseline needed to be reserved to satisfy baseline perfor-
mance levels.

The host system management service 120 can then either
lookup or calculate the total capacity of a host system. For
example, for a host system such as the one illustrated 1n FIG.
6. having a single processor, the total vCPU capacity of that
system might be eight (i.e., four cores at two hyper-threads,
or vCPUs under that mapping, per core).

Subtracting the total baseline from the total capacity of
the of the host system, the host system management service
120 can determine how much potential overhead can exist or
the “total burst” capacity of the host system.

The host system management service 120 can calculate an
average compute ufilization for each instance. Such an
average can be calculated as a cumulative moving average,
a simple moving average, etc. The host system management
service 120 can store prior usage metrics 723 to facilitate the
calculation of the moving average. In some cases, the
obtained metric might represent total compute usage time
per-instance such that larger burstable instance having a
higher allocation of vCPUs could have higher averages. In
such cases, the host system management service 120 can
normalize the usage time for each instance by the associated
number of vCPUs allocated to that instance.

The host system management service 120 can then use the
average compute utilization for each instance to generate an
active” 1ndex that can be used to order the relative usage of
each compute instance with higher indexes reflecting higher
activity. For example, the host system management service
120 can generate the active index by normalizing the aver-
age compute utilization (e.g., as determined by a moving
average) for each instance by 1ts associated baseline perfor-
mance level. For example, one of the small instances
described above with an average vCPU utilization of 50%
with a baseline performance level of 10% would be given an
active index of 5, while one of the large instances described

above with an average vCPU utilization of 60% with a
baseline performance level of 40% would be given an active
index of 1.5.

In another example, the host system management service
120 can generate the active index based on an exponentially
weighted moving average as follows:

- if =1
b He=

¢
o - > + (1 —@)-index,_; if t>1

iﬂdﬂ}{; —

where t 1s the observation index, c¢ 1s the average vCPU
utilization of the instance between observations t—1 and t, b
1s the per-vCPU baseline, and o 1s a weighting coefficient
ranging from 0 to 1 such that higher values of a discount
older observations faster. An example value for o 1s 0.5.

US 12,373,252 Bl

19

The host system management service 120 can the invert
the active index to generate a “passive” index to order the
relative usage of each compute 1instance with higher indexes
reflecting lower activity.

The host system management service 120 can then gen-
crate a burst priority weight for each instance. The host
system management service 120 can calculate the burst
priority weight for a given instance by dividing the
instance’s passive index by the sum of all of the passive
indexes, and multiplying that result by the total burst capac-
ity described above. The burst priority weight for an instance
reflects the priority the mstance should be given 1n addition
to 1ts baseline priority.

The host system management service 120 can then cal-
culate a final updated process prioritization weight for a
particular instance by summing the burst priority weight and
baseline priority weight calculated for that instance. Calcu-
lating a final updated process prioritization weight for each
of the instances results 1 a new set of updated process
prioritization weights.

Other policies can take different approaches to calculating,
process prioritization weights. For example, a naive policy
might 1gnore all previously obtained metrics and generate
weights 1nversely proportional to the compute usage
obtained 1n the most recent set of metrics (e.g., at circle 2).

After calculating updated process prioritization weights,
the host system management service 120 updates the
weights 719 of scheduler 717 as indicated at circle 4. As
indicated at circle 5 (some time after the prior core time
allocation at circle 1), the scheduler 717 can evaluate the
updated process prioritization weights 719 associated with
cach enqueued process request 1n allocating compute capac-
ity for the upcoming time slice to determine the order in
which to allocate resources (with any remaining enqueued
requests waiting until at least the next time slice). In the
illustrated example, mstances “A” and “B” appear to have
used more time slices than instances “C” and “D,” so the
updated weights 719 might favor instances “C” and “D,” at
least until the next round of weight updates.

By updating process prioritization weights based on past
usage and instance size such as described above, the host
system management service 120 can cause a host system
scheduler to fairly distribute excess compute capacity
amongst burstable 1nstances hosted on the host system. In
contrast to the above management of compute capacity
headroom amongst “creditless” burstable instances by the
scheduler 717 and host system management service 120,
prior “credit-based” instance bursting was based on the
availability of credits—whether accumulated or pur-
chased—ifor a given instance.

In some examples, additional adjustments can be applied
to the “final” process prioritization weights before updating,
a scheduler. The above example assumes a scheduler pri-
oritizes processes with a higher process prioritization
weight. That might not always be the case as some sched-
ulers might prioritize lower weights. Thus, the host system
management service 120 can perform other operations on
the weights to 1nvert, scale, or otherwise adjust the weights
prior to updating a scheduler.

FIG. 8 1s a diagram illustrating additional aspects of
burstable performance 1nstance prioritization by a scheduler
of a host system according to some examples. As suggested
by the example burstable instance sizes 199 1n FI1G. 1, some
burstable instance sizes might have a limit placed on their
burst performance level that 1s below 100% of a vCPU. For
example, the “small” size 1n examples 199 has a 25% burst
performance level. When two, different-sized instances

10

15

20

25

30

35

40

45

50

55

60

65

20

share the same underlying physical compute resource, such
a limit can prevent the smaller instance from blocking the
larger instance’s access to that resource.

While a “hard” limit on the burst performance level 1s
possible, in some cases a “soft” limit that allows the instance
to burst up to 100% utilization for a short period of time may
be desirable (e.g., for instances that spend significant time
operating below their baseline performance level.) Example
burstable mstance description 899 shows one such 1nstance.
As 1llustrated, this “soft-limit” burstable instance has a
baseline performance level, a sustained burst performance
level that the instance can achieve indefinitely provided
there 1s no contention, and a peak burst performance level
that the mstance can achieve for some finite amount of time.

Instance A 804 hosted by a host system 815 1s one such
burstable 1nstance. To provide a soft-limit, a queue 818 of a
scheduler 817 can have an associated enable 819 that can be
used to create a soit-limit. The enable 819 may prevent
requests from the 1nstance 804 from being queued or cause
the scheduler 818 to 1gnore enqueued entries when disabled.
To control the soft-limit, the enable 819 can be implemented
using a token bucket algorithm. Conceptually, a token
bucket algorithm has a fill rate, a drain rate, and a capacity.
The drain rate 1s a function of the instances demand (e.g.,
cach time the scheduler 817 honors a compute allocation
request, the bucket i1s drained by some amount). The fill rate
can be based on the desired sustained burst level of the
instance being limited and the drain rate. For example, 1f the
drain rate 1s one token each time slice the scheduler sched-
ules the instance, the fill rate can be a single token per four
time slices to achieve a sustained ratio of 1 to 4 or 25%. The
bucket capacity can be adjusted to determine a filled or
partially filled bucket will take to empty to the steady state.
For example, 1f the bucket has a capacity of 100 tokens with
a drain rate of 1 token per time slice, the instance could burst
up to 100% vCPU usage for approximately 133 time slices
betfore reaching the steady state (1.e., a dramn rate of 1 and a
f1ll rate of 0.25 results 1n a loss of approximately 0.75/4
tokens per time slice, and 100 divided by 34 1s approximately
133). A token bucket can be implemented using a counter
that can increment by the fill rate, decrement by the drain
rate, and has some limit as the capacity (e.g., 1t will not roll
over or under).

FIG. 9 1s a flow diagram 1illustrating operations 900 of a
method for burstable performance instance scheduling
according to some examples. Some or all of the operations
900 (or other processes described herein, or variations,
and/or combinations thereol) are performed under the con-
trol of one or more computer systems configured with
executable instructions, and are implemented as code (e.g.,
executable 1nstructions, one or more computer programs, Or
one or more applications) executing collectively on one or
more processors. The code 1s stored on a computer-readable
storage medium, for example, 1n the form of a computer
program comprising instructions executable by one or more
processors. The computer-readable storage medium 1s non-
transitory. In some examples, one or more (or all) of the
operations 900 are performed by a host computer system
114, the host system management service 120 and/or the
scheduler (e.g., 717, 817) of the other figures.

The operations 900 1nclude, at block 902, executing, by a
host computer system of a provider network, a plurality of
burstable performance compute instances, wherein at least
two of the plurality of burstable performance compute
instances have different sizes. The operations 900 further
include, at block 904, obtaining, from the host computer
system, compute capacity usage data, the compute capacity

US 12,373,252 Bl

21

usage data including a first indication of a first compute
capacity used by a first burstable performance compute
instance of the plurality of burstable performance compute
instances over a first period of time. The operations 900
turther 1nclude, at block 906, calculating a first weight for
the first burstable performance compute 1nstance, wherein
the first weight 1s versely related to the first compute
capacity. The operations 900 further include, at block 908,
updating a scheduler of the host computer system with a

plurality of process prioritization weights, the plurality of
process prioritization weights icluding a first process pri-
oritization weight that 1s based at least in part on the first
weight. The operations 900 further include, at block 910,
allocating, by the scheduler and over a second period of
time, at least a first portion of a total compute capacity of the
host computer system to the first burstable performance
compute instance based at least in part on the first process
prioritization weight.

FIG. 10 1s a diagram 1llustrating aspects of host system
heat management with burstable performance instances
according to some examples. To protect some amount of
headroom that allows burstable 1nstances to operate above
their baseline performance level, the placement service 116
can introduce a new slot status—*“constrained.” As indicated
above, slots can be marked as “available” or “used.” Other
slot statuses may exist, too, such as “blocked,” which may
be used 1n the case of a hardware failure, for example. The
placement service 116 can mark slots as “constrained” to
reflect heat-based limitations that are typically temporary
(e.g., until another remedial measure such as live migration
or re-balancing can lower resource utilization on the host
system). Constraiming a slot can prevent or limit placement
of an mstance 1n that slot, eflectively reserving the resources
that would be allocated to an instance placed 1n that slot as
additional headroom for other istances already hosted on
the host system. While constraiming slots can improve
individual burstable compute 1nstance performance, it 1s not
without costs, as overall fleet utilization can be reduced.

The placement service 116 can evaluate whether one or
more slots on a given host system should be constrained as
part of servicing various requests or as an independent
worktlow. For example, the placement service 116 can check
whether to constrain slots on a host system during placement
operations (i1llustrated and described at least with reference
to FIG. 5). As another example, the placement service 116
can re-evaluate previously constrained slots on a host system
upon receiving an indication that an instance was terminated
(e.g., from the hardware virtualization service 112) resulting
in a previously “used” slot becoming “available.” As another
example, the placement service 116 can periodically cycle
through the various host systems and add or remove slot
constraints independent of any received requests as part of
a workflow separate from inbound requests.

An example set of operations by the placement service
116 to 1dentify slots to be constrained and to update the host
data 510 accordingly 1s now described. At a high level, these
example operations detail the placement service 116 deter-
mimng whether a difference between an actual or predicted
compute resource usage (or utilization) of the host computer
system and the total baseline compute performance level 1s
below various thresholds and constraining slots accordingly.
In this example, three burstable instance sizes—“A,” “B.,”
and “C”—are referenced. Size A has a 10% performance
baseline and four vCPU allocation, size B has a 20%
performance baseline and four vCPU allocation, and size C
has a 40% performance baseline and four vCPU allocation.

5

10

15

20

25

30

35

40

45

50

55

60

65

22

Thus, the baseline vCPU allocation of size A, B, and C
burstable instances 1s 0.4 for size A, 0.8 for size B, and 1.6
for size C.

As 1ndicated at circle 1, the placement service 116 can
obtain slot usage data from the host data 510 for a particular
host system, 1n this case, host system 9ABC. The initial host
slot usage data 1011 reflects slot status on host system 9ABC
betore the placement service 116 evaluates whether to
impose constraints. As shown in data 1011 and as graphi-
cally depicted, the host system 9ABC has four available
slots for size A instances, two used and two available slots
for size B instances, and two used and two available slots for
s1ze C 1nstances.

As 1ndicated at circle 2, the placement service 116 can
obtain an indication of the actual compute capacity usage on
host system 9ABC from the host system resource usage
profiles 430. The actual compute capacity usage, sometimes
referred to as the compute resource utilization, can refer to
the aggregate compute capacity usage of each hosted
instance. The actual compute usage can be a statistic, such
as a total average compute usage of the instances in each
used slot over some period of time. As shown, the actual
compute usage for host system 9ABC 1s 6.8 vCPUs. Mean-
while, the expected compute usage would be 4.8 vCPUs (3.2
vCPUs for the used size C slots and 1.6 vCPUs for the used
s1ze B slots). Thus, the actual compute usage 1s higher than
expected, mndicating the instances placed onto host system
9ABC are using more compute resources than expected.

The placement service 116 can also obtain the baseline
capacity requirement for all of the instances slotted within
the template associated with the host 9ABC (e.g., by calcu-
lating 1t, by obtaining i1t from the host data 510). For
example, the total baseline capacity required for four of each
of burstable instance sizes A, B, and C 1s 9.6 vCPUs (4*(0.4
vCPUs+0.8 vCPUs+1.2 vCPUSs)).

Using the actual compute capacity usage and the total
baseline capacity, the placement service 116 can estimate the
amount of headroom available on a host system such as host
system 9ABC. Here, that headroom 1s 2.8 vCPUs (9.6
vCPUs-6.8 vCPUs).

In some examples, the placement service 116 can estimate
the amount of headroom available on a host system based on
predicted compute capacity usage data and the total baseline
capacity. For example, the placement service 116 can obtain,
per-instance, actual compute usage data (e.g., from host
system resource usage profiles 430) and estimated compute
usage data (e.g., from instance resource usage profiles 432).
For each instance, the placement service 116 can select the
higher of the two values to overestimate 1instances that might
be going through a brief period of inactivity while respecting,
the actual usage of instances exceeding their expected usage.
As another example, the istance resource usage profiles
432 may have time-based profiles (e.g., instance X uses Y
compute capacity between times t1 and {2, Z compute
capacity between times t2 and t3, etc.) The placement
service can obtain available time-based estimated compute
usage data for one or more hosted instances for an upcoming
time period, 1f available, and use actual compute usage data
or estimated compute usage data for compute usage for other
instances. In these examples, the placement service 116 can
“predict” what the headroom will be 1n the near future based
on a diflerence between the predicted compute capacity
usage data and the total baseline capacity.

Despite host system 9ABC having available slots, placing
additional 1nstances on 1t would negatively impact the ability
of mstances to burst by reducing that headroom. To prevent
or delay that from happening, the placement service 116 can

US 12,373,252 Bl

23

evaluate whether to constrain certain slots based at least 1n
part on whether the estimated amount of available headroom
1s below some threshold. Various thresholds can be used to
adjust the fleet utilization versus 1nstance performance trade-
ofl. An exemplary threshold 1s the baseline compute perfor-
mance ol various burstable performance compute instance
s1zes. In such a case, the placement service 116 can evaluate
slots to determine whether an mstance of the correspond size
would fit within the estimated headroom. The placement
service 116 can base the evaluation on the baseline or the
actual 1nstance usage profiles of the corresponding instance
S1ZE.

The placement service 116 can evaluate whether to con-
strain remaining slots from repeating from small to large,
repeating from large to small, exhausting sizes in some
order, snaking from small to large (e.g., small, medium,
large, small, . . .), or snaking from large to small (e.g., large,
medium, small, large, . . .). In some examples, the evalu-
ation order of slots to constrain i1s based on pool targets
received from the capacity management service 124 as
described below. In some examples, the evaluation order of
slots to constrain 1s based on pool health (e.g., constraining
slots with a higher number of available slots 1n the slot pool
before constraining slots with a lower number of available
slots 1n that slot pool).

For example, 1I the placement service 116 bases the
cvaluation on the baseline performance level for each
instance size and repeats from small to large:

2.8 headroom-0.4 baseline for size A=2.4 (one A {its)

2.4 headroom-0.8 baseline for size B=1.6 (one B fits)

1.6 headroom-1.6 baseline for size C=0.0 (one C fits)

(no additional headroom, all remaining slots constrained).

As another example, 1f the placement service 116 bases
the evaluation on the instance usage profiles (e.g., in
instance resource usage profiles 432) repeats from large to
small:

2.8 headroom-2.0 average usage for size C=0.8 (one C

fits)

0.8 headroom—-0.8 average usage for size B=0.8 (one B

fits)

(no additional headroom, all remaining slots constrained).

The updates to the host slot usage data 1011 after con-
straints are evaluated according to this second example are
illustrated. As can be seen, one of the available size C slots
was constrained, one of the available size B slots was
constrained, and all four of the available size A slots were
constrained.

The removal of constraints can proceed similar to the
above. For example, 11 an instance of size C contributing 3.2
to the actual compute usage of host 9ABC was terminated,
the updated actual compute usage of host 9ABC would be
3.6. The evaluation of unused slots (whether available or
constrained) can proceed as described above with a starting
headroom of 6.0 (e.g., 9.6-3.6). For example: 1 the place-
ment service 116 bases the evaluation on the baseline
performance level for each instance size and repeats from
small to large:

6.0 headroom-0.4 baseline for size A=5.6 (one A fits)

5.6 headroom-0.8 baseline for size B=4.8 (one B {its)

4.8 headroom-1.6 baseline for size C=3.2 (one C fits)

3.2 headroom-0.4 baseline for size A=2.8 (second A {its)

2.8 headroom-0.8 baseline for size B=2.0 (second B fits)

2.0 headroom-1.6 baseline for size C=0.4 (second C fits)

0.4 headroom-0.4 baseline for size A=0.0 (third A fits)

(no additional headroom, all remaining slots constrained).

Note that 1n examples that employ constrained slots, the
behavior of the placement service 116 during placement

10

15

20

25

30

35

40

45

50

55

60

65

24

operations such as described above with reference to FIG. 5
can be atlected. For example, the placement service 116 can
initially 1gnore constrained slots when identifying candi-
dates. That 1s, a ““constrained” slot status prevents or other-
wise blocks the placement service 116 from suggesting use
of the slot when providing candidates in response to a
placement request. In some examples, however, 11 the avail-
able slots that can satisty a request become exhausted, the
placement service 116 may make candidate selections based
on constrained slots.

As indicated at circle 5, the placement service 116 can
signal constraint changes to slots (e.g., whether from avail-
able to constrained, whether from constrained to available)
to the capacity management service 124,

In some examples, a scaling factor 1s mtroduced when
evaluating whether to constrain slots. The scaling factor can
be used to adjust the threshold, such as by scaling the
amount of baseline capacity an instance of a particular type
and size would consume. For example, a scaling factor of
0.75 could adjust the baseline capacity downward, reducing
the number of constrained slots resulting in increased utili-
zation and potentially decreasing the amount of headroom
for burst performance. Taking the example above where the
placement service 116 evaluates slots from small to large but

with a 0.5 scale factor:
2.8 headroom-0.75*0.4 baseline for size A=2.5 (one A

{its)

2.5 headroom-0.75*0.8 baseline for size B=1.9 (one B
{its)

1.9 headroom-0.75*1.6 baseline for size C=0.7 (one C
{its)

0.7 headroom-0.75*0.4 baseline for s1ze A=0.4 (second A
{its)

0.4 headroom-0.75*0.8 baseline for s1ze B=-0.2 (second
B does not fit)

(no additional headroom, all remaining slots constrained).

Conversely, a scaling factor of 1.1 could adjust the
baseline capacity upward, increasing the number of con-
strained slots resulting 1n decreased utilization and increased
headroom being preserved for burst performance. By adjust-
ing the scale factor, the cloud provider network operator can
make a trade-ofl between overall fleet capacity utilization
and the headroom, or burst performance capacity, of
burstable performance compute instances hosted by the
fleet.

In some examples, the placement service 116 can con-
strain one or more slots on a given host system based on
predicted peak burst utilization. For example, the placement
service 116 can obtain the historical or a predicted peak burst
for each of the hosted burstable performance mstances from
the mstance usage profiles data 432. The placement service
116 can sum the peak burst for each instance and compare
whether that total 1s greater than some threshold above the
total vCPU capacity of the associated host system, option-
ally adjusted by a scale factor. It the predicted peak burst
exceeds the threshold, the placement service 116 can con-
strain one or more, or even all, of the remaining available
slots.

FIG. 11 1s a diagram 1llustrating aspects of host system
fleet management with burstable performance instances
according to some examples. Customer demand for different
types and sizes ol compute mstances can change over time.
Such demand fluctuations can be hourly, daily, weekly,
monthly, seasonally, etc. The cloud provider network can
build demand forecast data 1102 based on previously
observed demand patterns. Such demand forecast data 1102
can be assembled per instance type and size, with each

US 12,373,252 Bl

25

forecast having multiple degrees of confidence. For
example, the demand forecast data 1102 for a “small”
burstable mstance might indicate that in the next hour, the
cloud provider network can expect at least 100 launches
with 95% confidence, at least 90 launches with 90% confi-
dence, at least 83 launches with 85% confidence, and so on.
The capacity management service 124 uses this demand
forecast data 1102 to re-shape or re-balance the unused
portion of the host system fleet to attempt to prepare for
incoming demand (e.g., by changing templates associated
with the host systems).

As indicated at circle 1, the capacity management service
124 obtains constrained slot updates from the placement
service 116. A pool manager 1110 of the capacity manage-
ment service 124 can update pool data 1104 based on the
obtained updates. Exemplary pool data can be used to track,
for each mstance type and size combination, the total
number of slots 1n the current fleet configuration and their
status. In this context, the fleet configuration refers to the
host systems and their associated templates. In other
examples, the pool manager 1110 can construct pool data
1104 based on host data 510, which can include, for each
host system, the associated template and slot usage data. For
example, 1f fifty host systems are associated with template
“FED,” and template “FED” has ten “small” size burstable
instance slots, the small burstable instance pool 1s 500 slots.
Note that other types and sizes of instances can and likely
are present 1n pool state data, but the example here 1s limited
to burstable instances of three different types for simplicity.

The pool manager 1110 determines the total unused
capacity 1n the fleet based on both available and constrained
slots. Such a determination may be in the form of an
estimate. For example, the pool manager 1110 can, for each
instance type and size, multiply the total number of con-
strained and available slots by an associated resource vector
to get an estimate of the unused capacity currently allocated
to that istance type and size. Then, the pool manager 1110
can sum all of the unused capacity currently allocated across
instance types and sizes to get a total unused capacity 1n the
fleet. Using the example pool state data, if instance size A
has a baseline performance level of 0.4 vCPUSs, instance size
B has a baseline performance level of 0.8 vCPUs, and
instance size C has a baseline performance level of 1.6
v(CPUs, the total unused capacity would be 844 vCPUs ((for
type A: 125 available slots+25 constrained slots)*0.4
vCPUs/slot+(for type B: 700 available slots+100 con-
strained slots)*0.8 vCPUs/slot+ (for type C: 60 available
slots+30 constrained slots)*1.6 vCPUs/slot). In other
examples, the pool manager 1110 can calculate the total
unused capacity based on actual instance resource usage
profiles 432 (not shown) by multiplying the actual instance
resource usage profile for a given type by the total number
of used slots for that type, summing all of the resulting
values for each type, and subtracting that amount from the
total tleet capacity. Note that constrained slots are consid-
ered part of unused capacity despite as some of those
“constrained” resources can be freed up by adjusting the
template associated with the host system as part of re-
balancing operations.

The pool manager 1110 can also determine the ratio of
constrained to used slots per pool. For example, pool type A
has a 8:1 ratio (1.e., 200:23), pool type B has a 1:1 ratio, and
pool type C has a 40:3 ratio.

As part of re-balancing, the pool manager 1110 deter-
mines updated pool targets based on the demand forecast
data 1102 and the total available capacity, as indicated at
circle 2. For example, the pool manager 1110 can determine

10

15

20

25

30

35

40

45

50

55

60

65

26

whether the expected minimum launch number for each
instance type at 95% confidence will fit within the total
available capacity. As part of that determination, the pool
manager 1110 can, for each pool, adjust the expected launch
number by the ratio of constrained slots for that pool. For
example, 11 the expected launch number for instance type A
1s 50, the pool manager 1110 can adjust that value by the 8:1
ratio to determine that those 50 launches will likely consume
~56 type A slots. The adjusted expected launch numbers for
cach pool can be multiplied by the corresponding resource
vector for that pool, summed over the pools, and compared
against the total unused capacity. If the total capacity
required to satisty the 95% confidence launch number as
adjusted by expected constraints 1s less than the total unused
capacity, the pool manager 1110 can set those adjusted
launch numbers as the new pool targets for re-balancing. If
the total capacity required to satisity the 93% confidence
launch number as adjusted by expected constraints 1s greater
than the total unused capacity, the pool manager 1110 can
move to the next available confidence. That 1s, the pool
manager 1110 can determine whether the expected minimum
launch number for each instance type at 90% confidence can
fit within the total available capacity, as described above.
As 1ndicated at circle 3, the pool manager 1110 sends the
updated pool targets with the fleet re-balancing manager
1112. At a high level, the tleet re-balancing manager 1112
evaluates potential changes to templates associated with host
systems to alter the number of slots per instance type based
on the updated pool targets. For example, if the updated pool
targets are 150, 600, and 65 for instance sizes A, B, and C,
respectively, the fleet re-balancing manager will attempt to
shift resource allocations via slots to create 25 size A slots

(above the 125 that are available), remove 100 size B slots
(below the 700 that are available), and create 5 size C slots
(above the 60 that are available).

As idicated at circle 4, the fleet re-balancing manager
1112 determines a new fleet configuration to meet the
updated pool targets. To do so, the fleet re-balancing man-
ager 1112 can iterate over existing host systems and attempt
to change the associated template (“re-templating”). As
indicated at circle 5, the fleet re-balancing manager 1112 can
request a set of candidate templates from the host packing
service 118. The request can include various constraints,
including that the candidate template(s) must include slots of
the type corresponding to the used slot(s), if any, in the
previous template (to leave those mstances undisturbed) and
whether to omit or prioritize certain slots in the candidates
based on pool targets (e.g., omit slots of size B given pool
target requires 100 fewer size B slots, prioritize slots of size
A given pool target requires 25 additional size A slots).

In some examples, the fleet re-balancing manager 1112
prioritizes re-templating host systems based on their usage
profiles. Host systems with lower usage typically have fewer
used slots, allowing for more degrees of freedom in the
candidate template(s).

In some cases, the host packing service 118 cannot satisiy
a request as no candidate template can satisly the con-
straints. In such a case, the fleet re-balancing manager 1112
moves on to the next host system. The fleet re-balancing
manager 1112 continues to identily host system template
changes until the pool targets are satisfied. In view of the
existing template configuration of host systems of the fleet,
the set of template changes represents a new fleet configu-
ration. As indicated at circle 6, the fleet re-balancing man-
ager 1112 updates the host data 510 to update the template
association of host systems aflected by the re-balance. As

US 12,373,252 Bl

27

part of updating the template associated with a given host
system, the fleet re-balancing manager 1112 can clear any
previously constrained slots.

In some examples, the fleet re-balancing manager 1112
will update the placement service 116 with the per-pool
estimated slot constraints based on the adjusted expected
launch numbers of the forecast confidence for each pool that
could be satisfied. For example, if the updated pool targets
are 150, 600, and 65 for instance sizes A, B, and C,
respectively, the un-adjusted numbers may have been 132
for size A with 18 slots expected to be constrained, 5350 for
s1ze B with 50 slots expected to be constrained, and 59 for
s1ze C with 6 slots expected to be constrained).

The placement service 116 can use the per-pool adjust-
ment amounts 1n evaluating which slots to prioritize for
constraint. For example, if the relative sizes of A, B, and C
are as 1llustrated 1n FIG. 10, the number of slots to constrain
for s1ze A would be 7.2 vCPUs (0.4 vCPUs*18 expected
constrained slots), the number of slots to constrain for size
B would be 40 vCPUs (0.8 vCPUs*50 expected constrained
slots), and the number of slots to constrain for size C would
be 9.6 (1.6 vCPUs*6 expected constrained slots). In evalu-
ating whether to constrain slots based on available head-
room, the placement service 116 can begin with slots least-
needing constraints (while headroom remains high) to
increase the likelihood that the slots in pools with an
expected larger number of constraints are constrained first.
Continuing the above example, the placement service 116
could attempt to prevent constraining size A slots (expected
7.2 vCPUs of constraint) and size C (expected 9.6 vCPUs of
constraint) slots over size B (expected 40 vCPUs of con-
straint).

Aspects of the above described components of the cloud
provider network 100 supporting burstable instances pro-
vide a multi-layered, dynamic approach to heat management
while improving the overall utilization of fleet computing,
resources. As described, the placement service 116 can
intelligently distribute new burstable instances to divide
expected workloads across the fleet. The placement service
116 can also impose temporary restrictions (e.g., constrained
slots) on the use of host system resources when actual host
system resource usage exceeds anticipated resource usage.
The host packing service 118 can divvy up host system
resources via templates 1n a manner to provide baseline
performance levels that customers can expect while allow-
ing unused capacity to be shared by other co-hosted
burstable instances. The host system management service
120 provides for the prioritization of resources amongst
burstable 1nstances during times of resource contention in a
manner that honors baseline performance levels. The live
migration service 122 can re-distribute burstable instances
when host systems become overheated despite the above
heat management techniques. And the capacity management
service 124 can re-shape the resource allocation of the fleet
to meet anticipated customer demand while account for the
dynamic resource consumption of burstable instances.

FIG. 12 15 a flow diagram 1llustrating operations 1200 of
a method for host system heat management according to
some examples. Some or all of the operations 1200 (or other
processes described herein, or variations, and/or combina-
tions thereol) are performed under the control of one or more
computer systems configured with executable instructions,
and are implemented as code (e.g., executable instructions,
one or more computer programs, or one or more applica-
tions) executing collectively on one or more processors. The
code 1s stored on a computer-readable storage medium, for
example, 1in the form of a computer program comprising

10

15

20

25

30

35

40

45

50

55

60

65

28

instructions executable by one or more processors. The
computer-readable storage medium 1s non-transitory. In
some examples, one or more (or all) of the operations 1200
are performed by a host computer system 114 and/or the
placement service 116 of the other figures.

The operations 1200 1nclude, at block 1202, executing, by
a host computer system of a cloud provider network, a first
burstable performance compute instance having an associ-
ated first baseline compute performance level, wherein the
first burstable performance compute instance i1s able to use
at least a portion of a compute capacity headroom of the host
computer system to exceed the first baseline compute per-
formance level. The operations 1200 further include, at
block 1204, calculating a total baseline compute perior-
mance level of a plurality of burstable performance compute
instances hosted by the host computer system, wherein the
plurality of burstable performance compute instances
includes the first burstable performance compute instance,
and wherein the total baseline compute performance level 1s
based at least i part on the first baseline compute perfor-
mance level. The operations 1200 further include, at block
1206, determiming that a difference between a compute
resource utilization of the host computer system and the total
baseline compute performance level 1s below a threshold.
The operations 1200 turther include, at block 1208, updating
a status i1dentifier associated with a portion of compute
capacity of the host computer system to reserve the portion
of compute capacity of the host computer system, wherein
the reserved portion of compute capacity contributes to the
compute capacity headroom.

FIG. 13 1illustrates an example provider network (or
“service provider system”) environment according to some
examples. A provider network 1300 can provide resource
virtualization to customers via one or more virtualization
services 1310 that allow customers to purchase, rent, or
otherwise obtain instances 1312 of virtualized resources,
including but not limited to computation and storage
resources, implemented on devices within the provider net-
work or networks 1n one or more data centers. Local Internet
Protocol (IP) addresses 1316 can be associated with the
resource 1nstances 1312: the local IP addresses are the
internal network addresses of the resource instances 1312 on
the provider network 1300. In some examples, the provider
network 1300 can also provide public IP addresses 1314
and/or public IP address ranges (e.g., Internet Protocol
version 4 (IPv4) or Internet Protocol version 6 (IPv6)
addresses) that customers can obtain from the provider
1300.

Conventionally, the provider network 1300, via the vir-
tualization services 1310, can allow a customer of the
service provider (e.g., a customer that operates one or more
customer networks 1350A-1350C (or “client networks™)
including one or more customer device(s) 1352) to dynami-
cally associate at least some public IP addresses 1314
assigned or allocated to the customer with particular
resource 1nstances 1312 assigned to the customer. The
provider network 1300 can also allow the customer to remap
a public IP address 1314, previously mapped to one virtu-
alized computing resource instance 1312 allocated to the
customer, to another wvirtualized computing resource
instance 1312 that 1s also allocated to the customer. Using
the virtualized computing resource istances 1312 and pub-
lic IP addresses 1314 provided by the service provider, a
customer of the service provider such as the operator of the
customer network(s) 1350A-1350C can, for example, 1imple-
ment customer-specific applications and present the custom-
er’s applications on an intermediate network 1340, such as

US 12,373,252 Bl

29

the Internet. Other network entities 1320 on the intermediate
network 1340 can then generate trailic to a destination public
IP address 1314 published by the customer network(s)
1350A-1350C; the trailic 1s routed to the service provider
data center, and at the data center 1s routed, via a network
substrate, to the local IP address 1316 of the virtualized
computing resource istance 1312 currently mapped to the
destination public IP address 1314. Siumilarly, response trai-
fic from the virtualized computing resource instance 1312
can be routed via the network substrate back onto the
intermediate network 1340 to the source entity 1320.
Local IP addresses, as used herein, refer to the internal or
“private” network addresses, for example, of resource
instances in a provider network. Local IP addresses can be

within address blocks reserved by Internet Engineering Task
Force (IE'TF) Request for Comments (RFC) 1918 and/or of

an address format specified by IETF RFC 4193 and can be
mutable within the provider network. Network traflic origi-
nating outside the provider network 1s not directly routed to
local IP addresses; instead, the ftrathic uses public IP
addresses that are mapped to the local IP addresses of the
resource instances. The provider network can include net-
working devices or appliances that provide network address
translation (NAT) or similar functionality to perform the
mapping from public IP addresses to local IP addresses and
viCe versa.

Public IP addresses are Internet mutable network
addresses that are assigned to resource instances, either by
the service provider or by the customer. Trailic routed to a
public IP address 1s translated, for example via 1:1 NAT, and
forwarded to the respective local IP address of a resource
instance.

Some public IP addresses can be assigned by the provider
network infrastructure to particular resource mstances; these
public IP addresses can be referred to as standard public 1P
addresses, or simply standard IP addresses. In some
examples, the mapping of a standard IP address to a local 1P
address of a resource instance 1s the default launch configu-
ration for all resource instance types.

At least some public IP addresses can be allocated to or
obtained by customers of the provider network 1300; a
customer can then assign their allocated public IP addresses
to particular resource instances allocated to the customer.
These public IP addresses can be referred to as customer
public IP addresses, or simply customer IP addresses.
Instead of being assigned by the provider network 1300 to
resource 1nstances as 1n the case of standard IP addresses,
customer IP addresses can be assigned to resource 1nstances
by the customers, for example via an API provided by the
service provider. Unlike standard IP addresses, customer IP
addresses are allocated to customer accounts and can be
remapped to other resource instances by the respective
customers as necessary or desired. A customer IP address 1s
associated with a customer’s account, not a particular
resource instance, and the customer controls that IP address
until the customer chooses to release 1t. Unlike conventional
static IP addresses, customer IP addresses allow the cus-
tomer to mask resource instance or availability zone failures
by remapping the customer’s public IP addresses to any
resource instance associated with the customer’s account.
The customer IP addresses, for example, enable a customer
to engineer around problems with the customer’s resource
instances or software by remapping customer IP addresses to
replacement resource instances.

FIG. 14 1s a block diagram of an example provider
network environment that provides a storage service and a
hardware virtualization service to customers, according to

10

15

20

25

30

35

40

45

50

55

60

65

30

some examples. A hardware virtualization service 1420
provides multiple compute resources 1424 (e.g., compute
instances 1425, such as VMs) to customers. The compute
resources 1424 can, for example, be provided as a service to
customers of a provider network 1400 (e.g., to a customer
that implements a customer network 1450). Each computa-
tion resource 1424 can be provided with one or more local
IP addresses. The provider network 1400 can be configured
to route packets from the local IP addresses of the compute
resources 1424 to public Internet destinations, and from
public Internet sources to the local IP addresses of the
compute resources 1424.

The provider network 1400 can provide the customer
network 1430, for example coupled to an intermediate
network 1440 via a local network 1456, the ability to
implement virtual computing systems 1492 via the hardware
virtualization service 1420 coupled to the mtermediate net-
work 1440 and to the provider network 1400. In some
examples, the hardware virtualization service 1420 can
provide one or more APIs 1402, for example a web services
interface, via which the customer network 1450 can access
functionality provided by the hardware virtualization service
1420, for example via a console 1494 (e.g., a web-based
application, standalone application, mobile application, etc.)
of a customer device 1490. In some examples, at the
provider network 1400, each virtual computing system 1492
at the customer network 1450 can correspond to a compu-
tation resource 1424 that 1s leased, rented, or otherwise
provided to the customer network 1450.

From an instance of the virtual computing system(s) 1492
and/or another customer device 1490 (e.g., via console
1494), the customer can access the functionality of a storage
service 1410, for example via the one or more APIs 1402, to
access data from and store data to storage resources 1418 A -
1418N of a virtual data store 1416 (e.g., a folder or “bucket,”
a virtualized volume, a database, etc.) provided by the
provider network 1400. In some examples, a virtualized data
store gateway (not shown) can be provided at the customer
network 1450 that can locally cache at least some data, for
example frequently accessed or critical data, and that can
communicate with the storage service 1410 via one or more
communications channels to upload new or modified data
from a local cache so that the primary store of data (the
virtualized data store 1416) i1s maintained. In some
examples, a user, via the virtual computing system 1492
and/or another customer device 1490, can mount and access
virtual data store 1416 volumes via the storage service 1410
acting as a storage virtualization service, and these volumes
can appear to the user as local (virtualized) storage 1498.

While not shown in FIG. 14, the virtualization service(s)
can also be accessed from resource instances within the
provider network 1400 via the API(s) 1402. For example, a
customer, appliance service provider, or other entity can
access a virtualization service from within a respective
virtual network on the provider network 1400 via the API(s)
1402 to request allocation of one or more resource instances
within the virtual network or within another virtual network.
[llustrative Systems

In some examples, a system that implements a portion or
all of the techniques described herein can include a general-
purpose computer system, such as the computer system
1500 1llustrated 1n FIG. 15, that includes, or 1s configured to
access, one or more computer-accessible media. In the
illustrated example, the computer system 1500 includes one
or more processors 1510 coupled to a system memory 1520
via an input/output (I/O) interface 1530. The computer
system 1500 further includes a network interface 13540

US 12,373,252 Bl

31

coupled to the I/O interface 1530. While FIG. 15 shows the
computer system 1500 as a single computing device, 1n
various examples the computer system 1500 can include one
computing device or any number ol computing devices
configured to work together as a single computer system

1500.

In various examples, the computer system 1500 can be a
uniprocessor system including one processor 1510, or a
multiprocessor system including several processors 1510
(e.g., two, four, eight, or another suitable number). The
processor(s) 1510 can be any suitable processor(s) capable
ol executing instructions. For example, 1n various examples,
the processor(s) 1510 can be general-purpose or embedded
processors implementing any of a variety of mstruction set

architectures (ISAs), such as the x86, ARM, PowerPC,
SPARC, or MIPS ISAs, or any other suitable ISA. In
multiprocessor systems, each of the processors 1510 can
commonly, but not necessarily, implement the same ISA.

The system memory 1520 can store instructions and data
accessible by the processor(s) 1510. In various examples,
the system memory 1520 can be implemented using any
suitable memory technology, such as random-access
memory (RAM), staic RAM (SRAM), synchronous
dynamic RAM (SDRAM), nonvolatile/Flash-type memory,
or any other type of memory. In the illustrated example,
program 1nstructions and data implementing one or more
desired functions, such as those methods, techniques, and
data described above, are shown stored within the system
memory 1520 as code 1525 (e.g., executable to implement,
in whole or 1n part, the hardware virtualization service 112,
the placement service 116, the host packing service 118, the
host system management service 120, the live migration
service 122, and/or the capacity management service 124)
and data 1526.

In some examples, the I/O interface 1530 can be config-
ured to coordinate I/O trathic between the processor 1510,
the system memory 1520, and any peripheral devices 1n the
device, including the network interface 1540 and/or other
peripheral interfaces (not shown). In some examples, the I/O
interface 1530 can perform any necessary protocol, timing,
or other data transformations to convert data signals from
one component (e.g., the system memory 1520) into a
format suitable for use by another component (e.g., the
processor 1510). In some examples, the I/O interface 1530
can include support for devices attached through various
types of peripheral buses, such as a variant of the Peripheral
Component Interconnect (PCI) bus standard or the Universal
Serial Bus (USB) standard, for example. In some examples,
the function of the I/O mterface 1530 can be split into two
or more separate components, such as a north bridge and a
south bridge, for example. Also, 1n some examples, some or
all of the functionality of the I/O interface 1530, such as an
interface to the system memory 1520, can be incorporated
directly into the processor 1510.

The network mterface 1540 can be configured to allow
data to be exchanged between the computer system 1500
and other devices 1560 attached to a network or networks
1550, such as other computer systems or devices as 1llus-
trated i FIG. 1, for example. In various examples, the
network interface 1540 can support communication via any
suitable wired or wireless general data networks, such as
types of Ethernet network, for example. Additionally, the
network interface 1540 can support communication via
telecommunications/telephony networks, such as analog
voice networks or digital fiber communications networks,

10

15

20

25

30

35

40

45

50

55

60

65

32

via storage area networks (SANs), such as Fibre Channel
SANSs, and/or via any other suitable type of network and/or
protocol.

In some examples, the computer system 1500 includes
one or more offload cards 1570A or 1570B (including one or
more processors 1575, and possibly including the one or
more network interfaces 1540) that are connected using the
I/O interface 1530 (e.g., a bus implementing a version of the
Peripheral Component Interconnect-Express (PCI-E) stan-
dard, or another interconnect such as a QuickPath intercon-
nect (QPI) or UltraPath interconnect (UPI)). For example, in
some examples the computer system 1500 can act as a host
clectronic device (e.g., operating as part of a hardware
virtualization service) that hosts compute resources such as
compute instances, and the one or more ofiload cards 1570A
or 15708 execute a virtualization manager that can manage
compute mnstances that execute on the host electronic device.
As an example, 1n some examples the offload card(s) 1570A
or 1570B can perform compute instance management opera-
tions, such as pausing and/or un-pausing compute instances,
launching and/or terminating compute instances, performing
memory transfer/copying operations, etc. These manage-
ment operations can, 1n some examples, be performed by the
offload card(s) 1570A or 1570B in coordination with a
hypervisor (e.g., upon a request from a hypervisor) that 1s
executed by the other processors 1510A-1510N of the
computer system 1500. However, in some examples the
virtualization manager implemented by the offload card(s)
1570A or 1570B can accommodate requests from other
entities (e.g., from compute instances themselves), and
cannot coordinate with (or service) any separate hypervisor.

In some examples, the system memory 1520 can be one
example of a computer-accessible medium configured to
store program instructions and data as described above.
However, in other examples, program 1instructions and/or
data can be received, sent, or stored upon different types of
computer-accessible media. Generally speaking, a com-
puter-accessible medium can include any non-transitory
storage media or memory media such as magnetic or optical
media, e.g., disk or DVD/CD coupled to the computer
system 1500 via the I/O interface 1530. A non-transitory
computer-accessible storage medium can also include any
volatile or non-volatile media such as RAM (e.g., SDRAM,
double data rate (DDR) SDRAM, SRAM, etc.), read only
memory (ROM), etc., that can be included 1n some examples
of the computer system 1500 as the system memory 1520 or
another type of memory. Further, a computer-accessible
medium can include transmission media or signals such as
clectrical, electromagnetic, or digital signals, conveyed via
a communication medium such as a network and/or a
wireless link, such as can be implemented via the network
interface 1540.

Various examples discussed or suggested herein can be
implemented i a wide variety of operating environments,
which 1n some cases can include one or more user comput-
ers, computing devices, or processing devices which can be
used to operate any of a number of applications. User or
client devices can include any of a number of general-
purpose personal computers, such as desktop or laptop
computers running a standard operating system, as well as
cellular, wireless, and handheld devices running mobile
soltware and capable of supporting a number of networking
and messaging protocols. Such a system also can include a
number ol workstations running any of a variety of com-
mercially available operating systems and other known
applications for purposes such as development and database
management. These devices also can include other elec-

US 12,373,252 Bl

33

tronic devices, such as dummy terminals, thin-clients, gam-
ing systems, and/or other devices capable of communicating
via a network.

Most examples use at least one network that would be
familiar to those skilled 1n the art for supporting communi-

cations using any of a variety of widely-available protocols,
such as Transmission Control Protocol/Internet Protocol

(TCP/IP), File Transier Protocol (F'1P), Universal Plug and
Play (UPnP), Network File System (NFS), Common Inter-
net File System (CIFS), Extensible Messaging and Presence
Protocol (XMPP), AppleTalk, etc. The network(s) can
include, for example, a local area network (LAN), a wide-
arca network (WAN), a virtual private network (VPN), the
Internet, an intranet, an extranet, a public switched telephone
network (PSTN), an infrared network, a wireless network,
and any combination thereof.

In examples using a web server, the web server can run
any of a variety of server or mid-tier applications, including
HTTP servers, File Transfer Protocol (F'1P) servers, Com-
mon Gateway Interface (CGI) servers, data servers, Java
servers, business application servers, etc. The server(s) also
can be capable of executing programs or scripts 1n response
requests from user devices, such as by executing one or
more Web applications that can be implemented as one or
more scripts or programs written 1n any programming lan-
guage, such as Java®, C, C# or C++, or any scripting
language, such as Perl, Python, PHP, or TCL, as well as
combinations thereof. The server(s) can also include data-
base servers. The database servers can be relational or
non-relational (e.g., “NoSQL”), distributed or non-distrib-
uted, etc.

Environments disclosed herein can include a varniety of
data stores and other memory and storage media as dis-
cussed above. These can reside 1n a vaniety of locations, such
as on a storage medium local to (and/or resident 1n) one or
more ol the computers or remote from any or all of the
computers across the network. In a particular set of
examples, the information can reside 1n a storage-area
network (SAN) familiar to those skilled 1n the art. Similarly,
any necessary files for performing the functions attributed to
the computers, servers, or other network devices can be
stored locally and/or remotely, as appropriate. Where a
system 1ncludes computerized devices, each such device can
include hardware elements that can be electrically coupled
via a bus, the elements including, for example, at least one
central processing unit (CPU), at least one input device (e.g.,
a mouse, keyboard, controller, touch screen, or keypad),
and/or at least one output device (e.g., a display device,
printer, or speaker). Such a system can also include one or
more storage devices, such as disk drives, optical storage
devices, and solid-state storage devices such as random-
access memory (RAM) or read-only memory (ROM), as
well as removable media devices, memory cards, tlash cards,
etc.

Such devices also can include a computer-readable stor-
age media reader, a communications device (e.g., a modem,
a network card (wireless or wired), an infrared communi-
cation device, etc.), and working memory as described
above. The computer-readable storage media reader can be
connected with, or configured to receive, a computer-read-
able storage medium, representing remote, local, fixed,
and/or removable storage devices as well as storage media
for temporarily and/or more permanently containing, stor-
ing, transmitting, and retrieving computer-readable informa-
tion. The system and various devices also typically will
include a number of software applications, modules, ser-
vices, or other elements located within at least one working,

10

15

20

25

30

35

40

45

50

55

60

65

34

memory device, including an operating system and appli-
cation programs, such as a client application or web browser.
It should be appreciated that alternate examples can have
numerous variations Irom that described above. For
example, customized hardware might also be used and/or
particular elements might be implemented in hardware,
software (including portable software, such as applets), or
both. Further, connection to other computing devices such as
network mput/output devices can be employed.

Storage media and computer readable media for contain-
ing code, or portions ol code, can include any appropriate
media known or used 1n the art, including storage media and
communication media, such as but not limited to volatile and
non-volatile, removable and non-removable media 1mple-
mented 1n any method or technology for storage and/or
transmission of information such as computer readable
istructions, data structures, program modules, or other data,
including RAM, ROM, Electrically Erasable Programmable
Read-Only Memory (EEPROM), flash memory or other
memory technology, Compact Disc-Read Only Memory
(CD-ROM), Dagital Versatile Disk (DVD) or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by a system device. Based on the
disclosure and teachings provided herein, a person of ordi-
nary skill in the art will appreciate other ways and/or
methods to implement the various examples.

In the preceding description, various examples are
described. For purposes of explanation, specific configura-
tions and details are set forth 1n order to provide a thorough
understanding of the examples. However, 1t will also be
apparent to one skilled in the art that the examples can be
practiced without the specific details. Furthermore, well-
known features can be omitted or simplified in order not to
obscure the example being described.

Bracketed text and blocks with dashed borders (e.g., large
dashes, small dashes, dot-dash, and dots) are used herein to
illustrate optional aspects that add additional features to
some examples. However, such notation should not be taken
to mean that these are the only options or optional opera-
tions, and/or that blocks with solid borders are not optional
in certain examples.

Reference numerals with suflix letters or numbers (e.g.,
1418A-1418N, 115-1 to 115-N) can be used to indicate that
there can be one or multiple nstances of the referenced
entity 1n various examples, and when there are multiple
instances, each does not need to be 1dentical but may instead
share some general traits or act in common ways. Further,
the particular suflixes used are not meant to imply that a
particular amount of the enfity exists unless specifically
indicated to the contrary. Thus, two entities using the same
or different suflix letters might or might not have the same
number of 1nstances 1n various examples.

References to “one example,” “an example,” etc., indicate
that the example described may include a particular feature,
structure, or characteristic, but every example may not
necessarily include the particular feature, structure, or char-
acteristic. Moreover, such phrases are not necessarily refer-
ring to the same example. Further, when a particular feature,
structure, or characteristic 1s described 1n connection with an
example, 1t 1s submitted that 1t 1s within the knowledge of
one skilled 1n the art to affect such feature, structure, or
characteristic 1n connection with other examples whether or
not explicitly described.

Moreover, 1 the various examples described above,
unless specifically noted otherwise, disjunctive language

US 12,373,252 Bl

35

such as the phrase “at least one of A, B, or C” 1s intended to
be understood to mean either A, B, or C, or any combination
thereot (e.g., A, B, and/or C). Similarly, language such as “at
least one or more of A, B, and C” (or “one or more of A, B,
and C”) 1s intended to be understood to mean A, B, or C, or 5
any combination thereof (e.g., A, B, and/or C). As such,
disjunctive language 1s not mntended to, nor should it be
understood to, imply that a given example requires at least
one of A, at least one of B, and at least one of C to each be
present. 10

As used herein, the term “based on™ (or similar) 1s an
open-ended term used to describe one or more factors that
aflect a determination or other action. It 1s to be understood
that this term does not foreclose additional factors that may
aflect a determination or action. For example, a determina- 15
tion may be solely based on the factor(s) listed or based on
the factor(s) and one or more additional factors. Thus, 11 an
action A 1s “based on” B, 1t 1s to be understood that B 1s one
factor that aftects action A, but this does not foreclose the
action from also being based on one or multiple other 20
factors, such as factor C. However, 1n some instances, action
A may be based entirely on B.

Unless otherwise explicitly stated, articles such as “a” or
an” should generally be interpreted to include one or
multiple described 1tems. Accordingly, phrases such as “a 25
device configured to” or “a computing device” are intended
to include one or multiple recited devices. Such one or more
recited devices can be collectively configured to carry out
the stated operations. For example, “a processor configured
to carry out operations A, B, and C” can include a first 30
processor configured to carry out operation A working in
conjunction with a second processor configured to carry out
operations B and C.

Further, the words “may” or “can” are used 1n a permis-
s1ve sense (1.e., meaning having the potential to), rather than 35
the mandatory sense (1.e., meaning must). The words
“include,” “including,” and “includes™ are used to indicate
open-ended relationships and therefore mean including, but
not limited to. Similarly, the words “have,” “having,” and
“has” also indicate open-ended relationships, and thus mean 40
having, but not limited to. The terms “first,” “second,”
“third,” and so forth as used herein are used as labels for the
nouns that they precede, and do not imply any type of
ordering (e.g., spatial, temporal, logical, etc.) unless such an
ordering 1s otherwise explicitly indicated. Similarly, the 45
values of such numeric labels are generally not used to
indicate a required amount of a particular noun in the claims
recited herein, and thus a “fifth” element generally does not
imply the existence of four other elements unless those
clements are explicitly included 1n the claim or 1t 1s other- 50
wise made abundantly clear that they exist.

The specification and drawings are, accordingly, to be
regarded 1n an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes can be made thereunto without departing from the 55
broader scope of the disclosure as set forth in the claims.

What 1s claimed 1s:

1. A computer-implemented method comprising;:

executing, by a host computer system of a provider

network, a plurality of burstable performance compute 60
instances including a first burstable performance com-
pute 1nstance of a first size and a second burstable
performance compute instance ol a second size,
wherein the first size 1s different than the second size:
obtamning, from the host computer system, compute 65
capacity usage data, the compute capacity usage data
including a first indication of a first compute capacity

&

36

used by the first burstable performance compute
instance over a first pertod of time and a second
indication of a second compute capacity used by the
second burstable performance compute instance over
the first period of time, wherein the second compute
capacity 1s less than the first compute capacity;

calculating a first weight for the first burstable perfor-
mance compute instance, wherein the first weight 1s
inversely related to the first compute capacity;

calculating a second weight for the second burstable
performance compute instance, wheremn the second
weight 1s 1nversely related to the second compute
capacity;

updating a scheduler of the host computer system with a
plurality of process prioritization weights, the plurality
of process prioritization weights icluding a first pro-
cess prioritization weight that 1s based at least 1n part on
the first weight and a second process prioritization
weight that 1s based at least in part on the second
weight, wherein the second process prioritization
weilght 1s a higher priority than the first process priori-
tization weight; and

allocating, by the scheduler and over a second period of
time, at least a first portion of a total compute capacity
of the host computer system to the first burstable
performance compute instance based at least in part on
the first process prioritization weight.

2. The computer-implemented method of claim 1:

burstable performance compute instance, the first baseline
compute performance characteristic indicating a per-
centage utilization of a number of virtual processors;

wherein a second baseline compute performance charac-
teristic 1s associated with the second burstable perfor-
mance compute instance, the second baseline compute
performance characteristic indicating a percentage uti-
lization of a number of virtual processors; and

wherein the first portion of the total compute capacity 1s
less than the first baseline compute performance char-
acteristic; and

allocating, by the scheduler and over the second period of
time, at least a second portion of the total compute
capacity to the second burstable performance compute
instance, wherein the second portion of the total com-
pute capacity exceeds the second baseline compute
performance characteristic.

3. The computer-implemented method of claim 1:

wherein the first size 1s associated with a first baseline
compute performance characteristic indicating a per-
centage utilization of a number of virtual processors;
and

wherein calculating the first weight for the first burstable
performance compute nstance further comprises:
normalizing the first compute capacity at least in part

by the number of virtual processors.

4. A computer-implemented method comprising:

executing, by a host computer system ol a provider
network, a plurality of burstable performance compute
instances, wherein at least two of the plurality of
burstable performance compute nstances have differ-
ent sizes;

obtaining, from the host computer system, compute
capacity usage data, the compute capacity usage data
including a first indication of a first compute capacity
used by a first burstable performance compute instance
of the plurality of burstable performance compute
istances over a first period of time;

US 12,373,252 Bl

37

calculating a first weight for the first burstable perior-
mance compute instance, wherein the first weight 1s
inversely related to the first compute capacity;

updating a scheduler of the host computer system with a
plurality of process prioritization weights, the plurality
ol process prioritization weights including a first pro-
cess prioritization weight that 1s based at least 1n part on
the first weight; and

allocating, by the scheduler and over a second period of
time, at least a first portion of a total compute capacity
of the host computer system to the first burstable
performance compute instance based at least in part on

the first process prioritization weight.

5. The computer-implemented method of claim 4:

wherein the compute capacity usage data turther includes
a second 1ndication of a second compute capacity used
by a second burstable performance compute 1instance of
the plurality of burstable performance compute
instances over the first period of time, wherein the
second compute capacity 1s less than the first compute
capacity;

calculating a second weight for the second burstable
performance compute instance, wherein the second
weight 1s 1versely related to the second compute
capacity; and

wherein the plurality of process prioritization weights
further includes a second process prioritization weight
that 1s based at least 1n part on the second weight, and
wherein the second process prioritization weight 1s a
higher priority than the first process prioritization
weight.

6. The computer-implemented method of claim 4:

burstable performance compute 1nstance, the first baseline
compute performance characteristic indicating a per-
centage utilization of a number of virtual processors;

wherein a second baseline compute performance charac-
teristic 1s associated with a second burstable pertfor-
mance compute instance of the plurality of burstable
performance compute instances, the second baseline
compute performance characteristic indicating a per-
centage utilization of a number of virtual processors;
and

wherein the first portion of the total compute capacity 1s
less than the first baseline compute performance char-
acteristic; and

allocating, by the scheduler and over the second period of
time, at least a second portion of the total compute
capacity to the second burstable performance compute
instance, wherein the second portion of the total com-
pute capacity exceeds the second baseline compute
performance characteristic.

7. The computer-implemented method of claim 4,

wherein calculating the first weight for the first burstable
performance compute mstance further comprises:

updating a moving average of a compute capacity usage
by the first burstable performance compute instance
over time based at least in part on the first compute
capacity; and

wherein the first weight 1s based at least in part on the
moving average.

8. The computer-implemented method of claim 4:

wherein a first baseline compute performance character-
1stic 1s associated with the first burstable performance
compute 1nstance, the first baseline compute perfor-
mance characteristic indicating a percentage utilization
of a number of virtual processors; and

10

15

20

25

30

35

40

45

50

55

60

65

38

wherein a virtual processor corresponds to at least one of
a core ol a processor of the host computer system or a
hyper-thread of a processor of the host computer sys-
tem.

9. The computer-implemented method of claim 8:

wherein each burstable performance compute instance of
the plurality of burstable performance compute
instances has a non-static allocation of the total com-
pute capacity of the host computer system; and

wherein the first burstable performance compute nstance
can utilize up to one hundred percent of a virtual
processor for a period of time.

10. The computer-implemented method of claim 8:

wherein the scheduler includes an enable to limit the first
burstable performance compute instance to a sustained
burst compute capacity usage of less than one hundred
percent of a virtual processor over time; and

wherein the first baseline compute performance charac-
teristic 1s less than a second baseline compute perfor-
mance characteristic associated with a second burstable
performance compute instance of the plurality of
burstable performance compute instances.

11. The computer-implemented method of claim 4:

wherein a first baseline compute performance character-
1stic 1s associated with the first burstable performance
compute instance, the first baseline compute perfor-
mance characteristic indicating a percentage utilization
of a number of virtual processors; and

wherein calculating the first weight for the first burstable
performance compute nstance further comprises:
normalizing the first compute capacity at least 1n part

by the number of virtual processors.
12. The computer-implemented method of claim 4:
wherein the total compute capacity of the host computer
system 1s a total compute capacity allocated to the
plurality of burstable performance compute instances,
and further comprising:
executing, by the host computer system, a fixed compute
capacity allocation instance.
13. A system comprising:
a host computer system of a cloud provider network, the
host computer system including instructions that upon
execution cause the host computer system to:
execute a plurality of burstable performance compute
instances, wherein at least two of the plurality of
burstable performance compute instances have dii-
ferent sizes; and

allocate, by a scheduler and over a second period of
time subsequent to a first period of time, at least a
first portion of a total compute capacity of the host
computer system to a first burstable performance
compute instance based at least 1n part on a first
process prioritization weight; and

a {irst one or more electronic devices to implement a host
system management service 1n the cloud provider net-
work, the host system management service including
instructions that upon execution cause the host system
management service to:
obtain, from the host computer system, compute capac-

ity usage data, the compute capacity usage data
including a first indication of a first compute capacity
used by the first burstable performance compute
instance of the plurality of burstable performance
compute instances over the first period of time;
calculate a first weight for the first burstable perfor-
mance compute instance, wherein the first weight 1s
inversely related to the first compute capacity; and

US 12,373,252 Bl

39

update the scheduler of the host computer system with
a plurality of process prioritization weights, the
plurality of process prioritization weights imncluding
the first process prioritization weight that 1s based at
least 1n part on the first weight.
14. The system of claim 13:
wherein the compute capacity usage data further includes
a second 1ndication of a second compute capacity used
by a second burstable performance compute 1instance of
the plurality of burstable performance compute
instances over the first period of time, wheremn the
second compute capacity 1s less than the first compute
capacity;
wherein the host system management service includes
further instructions that upon execution cause the host
system management service to calculate calculating a
second weight for the second burstable performance
compute instance, wherein the second weight 1is
inversely related to the second compute capacity; and
wherein the plurality of process prioritization weights
further includes a second process prioritization weight
that 1s based at least in part on the second weight, and
wherein the second process prioritization weight 1s a
higher priority than the first process prioritization
weilght.
15. The system of claim 13:
wherein a first baseline compute performance character-
istic 1s associated with the first burstable performance
compute instance, the first baseline compute perfor-
mance characteristic indicating a percentage utilization
of a number of virtual processors;
wherein a second baseline compute performance charac-
teristic 1s associated with a second burstable perfor-
mance compute instance of the plurality of burstable
performance compute instances, the second baseline
compute performance characteristic indicating a per-
centage utilization of a number of virtual processors;
and
wherein the first portion of the total compute capacity 1s
less than the first baseline compute performance char-
acteristic; and
wherein the host computer system includes further
instructions that upon execution cause the host com-
puter system to allocate, by the scheduler and over the
second period of time, at least a second portion of the
total compute capacity to the second burstable perfor-
mance compute instance, wherein the second portion of
the total compute capacity exceeds the second baseline
compute performance characteristic.

10

15

20

25

30

35

40

45

40

16. The system of claim 13:

wherein the host system management service including
further nstructions that upon execution cause the host
system management service to update a moving aver-
age o a compute capacity usage by the first burstable
performance compute 1stance over time based at least
in part on the first compute capacity; and

wherein the first weight 1s based at least 1n part on the
moving average.

17. The system of claim 13:

wherein a first baseline compute performance character-
istic 1s associated with the first burstable performance
compute instance, the first baseline compute pertor-
mance characteristic indicating a percentage utilization
of a number of virtual processors; and

wherein a virtual processor corresponds to at least one of
a core ol a processor of the host computer system or a

hyper-thread of a processor of the host computer sys-
tem.

18. The system of claim 17:

wherein each burstable performance compute mnstance of
the plurality of burstable performance compute
instances has a non-static allocation of the total com-
pute capacity of the host computer system; and

wherein the first burstable performance compute nstance
can utilize up to one hundred percent of a virtual
processor for a period of time.

19. The system of claim 17:

wherein the scheduler includes an enable to limit the first
burstable performance compute instance to a sustained
burst compute capacity usage of less than one hundred
percent ol a virtual processor over time; and

wherein the first baseline compute performance charac-
teristic 1s less than a second baseline compute perfor-
mance characteristic associated with a second burstable
performance compute instance of the plurality of
burstable performance compute instances.

20. The system of claim 13:

burstable performance compute instance, the first baseline
compute performance characteristic indicating a per-
centage utilization of a number of virtual processors;
and

wherein the host system management service including
further instructions that upon execution cause the host
system management service to normalize the first com-
pute capacity at least 1n part by the number of virtual
processors to calculate the first weight.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

