US011803407B1

a2y United States Patent 10) Patent No.: US 11,803,407 B1

Gadalin et al. 45) Date of Patent: Oct. 31, 2023
(54) EMULATION LAYER FOR OVERCOMING 9,495,183 B2* 11/2016 Bond GOGF 9/45545
9,569,246 B2* 2/2017 Roehrig HO4L 67/1095
INCOMPATIBILITIES IN VIRTUAL 11,055,896 B1* 7/2021 Nikitenko GO06T 15/005
MACHINE INSTANCE MIGRATION 2002/0129126 A1* 9/2002 ChU oo GOGF 9/4856
709/224
(71) Applicant: Amazon Technologies, Inc., Seattle, 2005/0235287 Al* 10/2005 Harperccccoon..... GO6T 1/20
WA (US) 718/100
2008/0235378 Al* 9/2008 Fried woovoovvvcvvervinn, GOG6F 9/4856
. : - . 709/226
(72) Inventors: Alexey Gadalin, Kirkland, WA (US); 2009/0070760 AL* 3/2009 Khatri w.ovoevooeonn. GOG6F 9/5044
Ethan John Faust, Seattle, WA (US); 718/1

Anton Valter, Renton, WA (US) 2009/0260006 A1 10/2009 Horta
2009/0304011 A1* 12/2009 Smith ovvvvevervvon. GO6F 3/0683
(73) Assignee: AMAZON TECHNOLOGIES, INC., 370/463
Seattle, WA (US) 2011/0054879 Al* 3/2011 Bogsanyl GOG6F 9/45558
’ 718/1
. _
(*) Notice: Subject to any disclaimer, the term of this 201170265084 ALT 1072011 Knowles .oooococ.v.e. GO0k 2/148?

patent 1s extended or adjusted under 35

U.S.C. 154(b) by 192 days. (Continued)

(21) Appl. No.: 17/037,510 OTHER PUBLICATTONS

U.S. Appl. No. 17/037,513, filed Sep. 29, 2020.

(22) Filed: Sep. 29, 2020 Non-Final Office Action for US. Appl. No. 17/037.513 dated

12/219/2022.
(51) Int. CL
GOof 9/455 (2018.01) Primary Examiner — Mehran Kamran
GOoF 9/50 (2006.01) (74) Attorney, Agent, or Firm — Thomas Horstemeyer,
(52) U.S. CL LLP
CPC GO6F 9/45558 (2013.01); GO6F 9/4552
(2013.01); GO6F 9/5077 (2013.01); GO6F (57) ABSTRACT

2009/4557 (2013.01); GO6L” 2009/45562 Disclosed are various embodiments for an emulation layer
(2013.01); GO6L” 2009/45595 (2013.01) for overcoming incompatibilities 1n virtual machine mstance

(58) Field of Classification Search migration. In one embodiment, a virtual machine instance
CPC GO6F 9/45558 configured for a first computing architecture is executed in
USPC e e 718/1 a first computing device having the first computing archi-
See application file for complete search history. tecture. The virtual machine instance from the first comput-

ing device 1s migrated to a second computing device having

(56) References Cited a second computing architecture. The virtual machine

U.S PATENT DOCUMENTS instance is. executed 1n the second computing, de&«;’ice using
an emulation layer that emulates the first computing archi-
7,506,037 B1* 3/2009 Ciano GOG6F 9/4856 tecture in the second computing architecture.
709/221
0320886 B2* 5/2016 Vincent GOG6F 9/45558 20 Claims, 7 Drawing Sheets

403

\ Receive Request to Launch VM Instance Configured /

for First Computing Architecture

406 !

\ Determine Cost Reduction to Execute VM Instance
Under Second Computing Architecture

409 Il

\ Determine Performance Improvement to Execute VvV
Instance Under Second Computing Architecture

412 Il

\ Determine Performance Penalty Associated with
Emulatiqn Layer

415 v

\ Determine that Performance Improvement and/or Cost
Reduction Qutweighs Performance Penalty

421 !

\ Launch VM Instance in Computing Device Having
Second Computing Architecture Using Emulation
Layer

US 11,803,407 B1
Page 2

(56)

2013/0246771
2014/0165063
2014/0359613
2015/0331704
2016/0117121
2016/0132350
2018/0024854

2018/0074840
2018/0246757
2019/0213034
2019/0310880
2021/0006395
2021/0263762

References Cited

U.S. PATENT DOCUMENTS

Al* 9/2013 Farrell
Al* 6/2014 Shivacoovvonn. ..
Al* 12/2014 Tsukin
Al* 11/2015 Abali .ooovviviinn,
Al* 4/2016 Bohnco.i..
Al* 52016 DO1 oveviviieinininennn,
Al* 1/2018 Wang
Al* 3/2018 Chal ...ooovvvvvinnnnnn,
Al* 82018 Li oo,
Al* 7/2019 Vincent

Al* 10/2019 Gupta
Al 1/2021 Durham et al.

Al* 82021 Kachare

* cited by examiner

ttttttttttttttt

GO6F 9/3005

712/227

GOO6F 9/45533

718/1

GO6F 9/4856

718/1

GOOF 9/455

718/1

GOOF 3/064

711/114

GO6F 9/4856

718/1

GOO6F 12/1027

718/1

GO6F 9/4862
GOO6F 9/45558
GOO6F 9/45558
GOO6F 9/45533

GO6F 12/0868

U.S. Patent Oct. 31, 2023 Sheet 1 of 7 US 11.,803.407 B1

Computing Device 103 Computing Device 106

Emulation Layer 109

Virtual Machine

Instance 101 Virtual Machine

Instance 101

100

U.S. Patent Oct. 31, 2023 Sheet 2 of 7 US 11.,803.407 B1

Computing Environment 203

Computing Devices 215a Data Store 212

VM Instance(s) 101a

Computing Devices 215b

Emulation Layer 109

‘ VM Instance(s) 101a

VM Instance(s) 101b

Management Service 221 |

Migration Service 224

Hardware Support
Status 236

Client Device(s) 20

Network
Client Application 209

248

200

U.S. Patent

Oct. 31, 2023 Sheet 3 of 7

Computing Device 215

Virtual Machine Instance 101

Emulation Layer 109

Virtualization Layer 306

Processor 300

Virtualization Extensions 303

US 11,803,407 B1

U.S. Patent Oct. 31, 2023 Sheet 4 of 7 US 11.,803.407 B1

@ 221

403
Recelve Request to Launch VM Instance Configured /

for First Computing Architecture

406

Determine Cost Reduction to Execute VM Instance
Under Second Computing Architecture

409

Determine Performance Improvement to Execute VM
Instance Under Second Computing Architecture

412
Determine Performance Penalty Associated with
Emulation Layer
415

Determine that Performance Improvement and/or Cost
Reduction Outweighs Performance Penalty

421

Launch VM Instance in Computing Device Having
Second Computing Architecture Using Emulation
Layer

U.S. Patent Oct. 31, 2023 Sheet 5 of 7 US 11.,803.407 B1

@ 221

503
Recelve Request to Launch Computer Code /

Configured for First Computing Architecture

506

Determine Cost Reduction to Execute Computer Code
Under Second Computing Architecture

509

Determine Performance Improvement to Computer
Code Under Second Computing Architecture

512
Determine Performance Penalty Associated with
Emulation Layer
515

Determine that Performance Improvement and/or Cost
Reduction Outweighs Performance Penalty

521

Execute Computer Code in Computing Device Having
Second Computing Architecture Using Emulation
Layer

U.S. Patent Oct. 31, 2023 Sheet 6 of 7 US 11.,803.407 B1

@ 224

Execute VM Instance in First Computing Device /
606
Profile VM Instance

603

609
Determine to Migrate VM Instance to
Second Computing Device

612

Migrate VM Instance to Second Computing Device
615

Determine that One or More Incompatibilities Exist
618

Cause Second Computing Device to Use
Emulation Layer to Resolve Incompatibility

FIG. 6

U.S. Patent Oct. 31, 2023 Sheet 7 of 7 US 11.,803.407 B1

Computing Environment 203

Computing Device(s) 700
Memory(ies) 706

Processor(s) Management Service 221
103

Data Store
cle Migration Service 224

709

—

FIG. 7

US 11,803,407 Bl

1

EMULATION LAYER FOR OVERCOMING
INCOMPATIBILITIES IN VIRTUAL
MACHINE INSTANCE MIGRATION

BACKGROUND

Cloud computing, 1n general, 1s an approach to providing
access to information technology resources through ser-
vices, such as Web services, where the hardware and/or
solftware used to support those services i1s dynamically
scalable to meet the needs of the services at any given time.
In cloud computing, elasticity refers to network-delivered
computing resources that can be scaled up and down by the
cloud service provider to adapt to changing requirements of
users. The elasticity of these resources can be in terms of
processing power, storage, bandwidth, etc. Elastic comput-
ing resources may be delivered automatically and on-de-
mand, dynamically adapting to the changes in resource
requirement on or within a given user’s system. For
example, a user can use a cloud service to host a large online
streaming service, set up with elastic resources so that the
number of webservers streaming content to users scale up to
meet bandwidth requirements during peak viewing hours,
and then scale back down when system usage is lighter.

A user typically will rent, lease, or otherwise pay for
access to resources through the cloud, and thus does not
have to purchase and maintain the hardware and/or software
to provide access to these resources. This provides a number
of benefits, including allowing users to quickly reconfigure
theirr available computing resources in response to the
changing demands of their enterprise, and enabling the
cloud service provider to automatically scale provided com-
puting service resources based on usage, traflic, or other
operational needs. This dynamic nature of network-based
computing services, in contrast to a relatively static infra-
structure ol on-premises computing environments, requires
a system architecture that can reliably re-allocate its hard-
ware according to the changing needs of 1ts user base.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better
understood with reference to the following drawings. The
components 1 the drawings are not necessarily to scale,
with emphasis mstead being placed upon clearly illustrating,
the principles of the disclosure. Moreover, 1n the drawings,
like reference numerals designate corresponding parts
throughout the several views.

FIG. 1 1s a drawing of an example scenario involving use
of emulation to execute a virtual machine instance on
otherwise 1ncompatible hardware according to wvarious
embodiments of the present disclosure.

FIG. 2 1s a schematic block diagram of a networked
environment according to various embodiments of the pres-
ent disclosure.

FIG. 3 1s a schematic block diagram of a computing
device according to various embodiments of the present
disclosure.

FIGS. 4 and 5 are flowcharts illustrating examples of
functionality implemented as portions of a management
application executed in a computing environment in the
networked environment of FIG. 2 according to various
embodiments of the present disclosure.

FIG. 6 1s a flowchart 1illustrating one example of func-
tionality implemented as portions of a migration application

10

15

20

25

30

35

40

45

50

55

60

65

2

executed 1 a computing environment in the networked
environment of FIG. 2 according to various embodiments of
the present disclosure.

FIG. 7 1s a schematic block diagram that provides one
example 1llustration of a computing environment employed

in the networked environment of FIG. 2 according to various
embodiments of the present disclosure.

DETAILED DESCRIPTION

The present disclosure relates to the use of an emulation
layer 1n order to execute a virtual machine instance on
different hardware than for which the corresponding virtual
machine 1mage 1s configured. Often computer software 1s
executable only on a specific hardware platform. For per-
formance reasons, code written 1n a programming language
1s usually compiled to machine code or binary code that 1s
executable within a specific operating system and by a
specific family of processors. In addition, operating systems
are compiled for a specific family of processors. Thus, an
application compiled for an x86 architecture cannot be
directly executed on an ARM processor. Despite the use of
virtualization and a hypervisor to allow multiple virtual
machine instances to share physical hardware, a virtual
machine instance configured for execution on an x86 archi-
tecture cannot be executed on an ARM processor.

More generally, a virtual machine 1mage 1s tied to par-
ticular underlying hardware. Even though software applica-
tions may be written in a platform-independent program-
ming language, the applications are usually compiled to
platform-specific machine code. In many cases, an applica-
tion may be distributed as a platform-specific package or
with dependencies on platform-specific packages. Likewise,
when a virtual machine 1image 1s created or configured, an
application 1s typically installed within the environment of a
platform-specific operating system, even 1f the operating
system may be available for multiple platiorms.

If a user desires to execute an instance of a virtual
machine image on a different platform, the user typically has
to create a new version of the virtual machine image for the
different platform. This can entail configuring an operating
system for the different platform, obtaining binary software
packages for the diflerent platform, recompiling code for the
different platform, and/or installing the software within the
operating system. Such a process can be extremely labor and
time 1ntensive, as well as error prone. Consequently, many
users may decide simply to stay on older platforms and
forego moving to new platforms. In the cloud provider
network context, this 1s also limiting 1n terms of placement
and/or migration of the virtual machine within the fleet of
hosts, as any host used to run the virtual machine 1nstance
1s required to have compatible hardware with the machine
image.

By contrast, cloud providers may have substantial incen-
tives to introduce new platforms, and to try to achieve even
utilization of the diflerent platforms within the fleet. Due to
scale and vertical itegration, a cloud provider may develop
and offer utility computing capabilities via a custom pro-
cessor type using an architecture or mnstruction set that may
not be compatible with one or more types of existing virtual
machine instances. Using the custom processor type may
provide a performance improvement and/or a cost reduction,
but 1n view of the eflort required to port a virtual machine
instance to the custom processor type, customers may not be
motivated to move. As a result, many customers may stay on
deprecated virtual machine instance types that are resource
inefhicient for the cloud provider in terms of rack space,

US 11,803,407 Bl

3

power, and/or cooling, and the platforms that host such
deprecated 1nstance types may become over-utilized.

Various embodiments of the present disclosure introduce
an emulation layer to allow virtual machine instances con-
figured for one type of computer architecture to be trans-
parently executed in another type of computer architecture.
In a first set of embodiments, customers of a cloud provider
are able to launch virtual machine instances from a virtual
machine image configured for a first architecture or platform
in a different architecture or platform without having to
reconiigure the virtual machine image. For example, using,
an emulation layer, a customer may launch an x86 machine
image on an ARM-based computer system that 1s faster and
less costly under a utility computing model rather than a
native x86-based computer system. Even though the emu-
lation layer may impose a performance penalty, the pertor-
mance immprovement ol the ARM-based computer system
may outweigh the emulation layer performance penalty.
Even if the emulation layer performance penalty were to
nullify the performance gains, the customer may still benefit
from a lower cost.

In a second set of embodiments, customers of a cloud
provider may have their virtual machine mstances executed
in a first architecture or platform transparently migrated to a
second architecture or platform using an emulation layer to
resolve any incompatibilities. This can benefit both the
customers and the cloud provider by allowing the cloud
provider to remove unsupported, deprecated, or legacy hard-
ware, thereby reducing resource consumption and 1mprov-
ing reliability, while allowing the customers to avoid inter-
ruptions or costly reconfiguration of wvirtual machine
instances.

Migration refers to moving virtual machine instances
(and/or other resources) between hosts 1n a cloud computing
network, or between hosts outside of the cloud computing,
network and hosts within the cloud. There are diflerent types
of migration including live migration and reboot migration.
Techniques for various types of migration involve managing
the critical phase—the time when the wvirtual machine
instance 1s unavailable to the customer—which should be
kept as short as possible.

During a reboot migration, the customer experiences an
outage and an eflective power cycle of their virtual machine
instance. For example, a control plane service can coordi-
nate a reboot migration worktlow that involves tearing down
the current domain on the original host (the “source host™)
and subsequently creating a new domain for the virtual
machine instance on the new host (the “target host™). The
instance 1s rebooted by being shut down on the original host
and booted up again on the new host.

Live migration refers to the process of moving a running,
virtual machine 1nstance between different physical
machines without significantly disrupting the availability of
the virtual machine instance (e.g., the down time of the
virtual machine instance 1s not noticeable by the end user).
When the control plane imitiates a live migration worktlow
it can cause the creation of a new “inactive” domain asso-
ciated with the instance on a target host, while the original
domain for the instance continues to run as the “active”
domain on the source host. Memory (including any 1in-
memory state of running applications), storage, and network
connectivity of the virtual machine are transferred from the
original host with the active domain to the destination host
with the mactive domain. For example, a local migration
manager running on the source can send memory pages to
the target host (also referred to as the “state” of the instance),
track changes to the memory pages, and continue sending,

10

15

20

25

30

35

40

45

50

55

60

65

4

the changed pages to the target host. The instance may be
briefly paused to prevent state changes while transferring a
final set of memory contents to the target host. Thereafter,
one or more of the control plane, the local migration
manager, and the hypervisors (on the source and target
hosts) can transition the inactive domain to become the
active domain and demote the original active domain to
become the imactive domain (sometimes referred to as a
“tlip™), after which the instance begins running on the target
host, and the 1nactive domain can be discarded. Additional

details relating to virtual machine instance migration are
provided 1 U.S. application Ser. No. 16/442,325 (U.S. Pat.

App. Pub. No. 2019/0310880), titled “MANAGED
ORCHESTRATION OF VIRTUAL MACHINE
INSTANCE MIGRATION,” which 1s incorporated herein
by reference 1n its entirety.

Turning now to FIG. 1, shown 1s an example scenario 100
involving the use of emulation to execute a virtual machine
instance 101 on otherwise incompatible hardware. The vir-
tual machine 1nstance 101 corresponds to a virtual machine
image that 1s configured for execution under a computing
device 103 having a first computing architecture. For
example, the computing device 103 may have the x86_64
architecture, and the virtual machine instance 101 may
include an operating system and applications that are con-
figured for execution under the x86_64 architecture.

For wvarious reasons as will be described, it can be
desirable to execute the virtual machine nstance 101 1n a
computing device 106 having a second, different computing
architecture. For example, the computing device 106 may
have an ARM architecture, which may be mcompatible for
execution of a virtual machine mnstance 101 configured for
the x86_64 architecture. It may be possible to create a new
virtual machine 1image with an operating system that sup-
ports ARM or the same applications compiled for ARM, but
such an endeavor may be complex and costly 1n terms of
time and developer resources.

In this example scenario, the same virtual machine
instance 101 1s executed in the computing device 106
through the use of the emulation layer 109. The emulation
layer 109 emulates the first computing architecture within
the second computing architecture. Although the emulation
layer 109 may impose a performance penalty, a performance
improvement of the computing device 106 as compared to
the computing device 103 may overcome and potentially
exceed the performance penalty. In various embodiments,
the emulation layer 109 may be used to launch new virtual
machine instances 101 having a virtual machine i1mage
created for the first computing architecture, or the emulation
layer 109 may be used 1n migrating existing virtual machine
instances 101 from a computing device 103 having the first
computing architecture to a computing device 106 having
the second computing architecture.

As one skilled 1n the art will appreciate 1n light of this
disclosure, certain embodiments may be capable of achiev-
ing certain advantages, including some or all of the follow-
ing: (1) improving the performance of computer systems by
allowing virtual machine instances to be executed on faster
hardware; (2) improving flexibility by allowing wvirtual
machine istances to be executed on otherwise incompatible
hardware; (3) facilitating live migration and/or reboot
migration of virtual machine instances from one platiform to
another; (4) allowing outdated hardware to be retired by
moving virtual machine instances from that hardware to
newer hardware that may require less rack space, power,
and/or cooling; (5) allowing hardware that 1s incompatible
with an installed base of software to be utilized; (6) provid-

US 11,803,407 Bl

S

ing the ability to scale computing resources by load balanc-
Ing across a greater pool of compatible hosts; and so forth.
In the following discussion, a general description of the
system and 1ts components 1s provided, followed by a
discussion of the operation of the same.

With reference to FIG. 2, shown 1s a networked environ-
ment 200 according to various embodiments. The networked
environment 200 includes a computing environment 203
and one or more client devices 206, which are 1n data
communication with each other via a network 209. The
network 209 includes, for example, the Internet, intranets,
extranets, wide area networks (WANSs), local area networks
(LANSs), wired networks, wireless networks, cable networks,
satellite networks, or other suitable networks, etc., or any
combination of two or more such networks.

The networked environment 200 may correspond to a
cloud provider network (sometimes referred to simply as a
“cloud”), which 1s a pool of network-accessible computing
resources (such as compute, storage, and networking
resources, applications, and services), which may be virtu-
alized or bare-metal. The cloud can provide convenient,
on-demand network access to a shared pool of configurable
computing resources that can be programmatically provi-
sioned and released in response to customer commands.
These resources can be dynamically provisioned and recon-
figured to adjust to variable loads. Cloud computing can thus
be considered as both the applications delivered as services
over a publicly accessible network (e.g., the Internet, a
cellular communication network) and the hardware and
software 1n cloud provider data centers that provide those
SErvices.

A cloud provider network can be formed as a number of
regions, where a region 1s a separate geographical area in
which the cloud provider clusters data centers. Example
regions include U.S. East (located on the east coast of the
U.S.), U.S. West (located on the west coast of the U.S.),
Europe—London, and Furope—Paris. Each region can
include two or more availability zones connected to one
another via a private high-speed network, for example a fiber
communication connection. An availability zone refers to an
1solated failure domain including one or more data center
facilities with separate power, separate networking, and
separate cooling from those 1n another availability zone.
Preferably, availability zones within a region are positioned
far enough away from one other that the same natural
disaster should not take more than one availability zone
oflline at the same time. Customers can connect to avail-
ability zones of the cloud provider network via a publicly
accessible network (e.g., the Internet, a cellular communi-
cation network) to access resources and services of the cloud
provider network. Transit Centers (1C) are the primary
backbone locations linking customers to the networked
environment 200, and may be co-located at other network
provider facilities (e.g., Internet service providers, telecom-
munications providers). Each region can operate two TCs
for redundancy.

Generally, the traflic and operations of a cloud provider
network may broadly be subdivided into two categories:
control plane operations carried over a logical control plane
and data plane operations carried over a logical data plane.
While the data plane represents the movement of user data
through the networked environment 200, the control plane
represents the movement of control signals through the
networked environment 200. The control plane generally
includes one or more control plane components distributed
across and implemented by one or more control servers.
Control plane ftraflic generally includes administrative

e

10

15

20

25

30

35

40

45

50

55

60

65

6

operations, such as system configuration and management
(e.g., resource placement, hardware capacity management,
diagnostic momitoring, system state information). The data
plane includes customer resources that are implemented on
the provider network (e.g., computing instances, containers,
block storage volumes, databases, file storage). Data plane
traflic generally includes non-administrative operations such
as transierring customer data to and from the customer
resources. The control plane components are typically
implemented on a separate set of servers from the data plane
servers, and control plane traflic and data plane trathic may
be sent over separate/distinct networks.

The computing environment 203 may comprise, for
example, a server computer or any other system providing
computing capability. Alternatively, the computing environ-
ment 203 may employ a plurality of computing devices that
may be arranged, for example, 1n one or more server banks
or computer banks or other arrangements. Such computing
devices may be located in a single installation or may be
distributed among many different geographical locations.
For example, the computing environment 203 may include
a plurality of computing devices that together may comprise
a hosted computing resource, a grid computing resource,
and/or any other distributed computing arrangement. In
some cases, the computing environment 203 may corre-
spond to an elastic computing resource where the allotted
capacity of processing, network, storage, or other comput-
ing-related resources may vary over time.

In some embodiments, the computing environment 203
may correspond to a virtualized private network within a
physical network comprising virtual machine instances
executed on physical computing hardware, e.g., by way of a
hypervisor. The virtual machine instances may be given
network connectivity by way of virtualized network com-
ponents enabled by physical network components, such as
routers and switches.

Various applications and/or other functionality may be
executed 1n the computing environment 203 according to
various embodiments. Also, various data 1s stored 1n a data
store 212 that 1s accessible to the computing environment
203. The data store 212 may be representative of a plurality
ol data stores 212 as can be appreciated. The data stored 1n
the data store 212, for example, 1s associated with the
operation of the various applications and/or functional enti-
ties described below.

The computing environment 203 as part of a cloud
provider network offering utility computing services
includes computing devices 215a, computing devices 2155,
and other types of computing devices. The computing
devices 2154 and the computing devices 2156 may corre-
spond to different types of computing devices 215 and may
have different computing architectures. The computing

architectures may differ by utilizing processors having dii-
ferent architectures, such as x86, x86_64, ARM, Scalable

Processor Architecture (SPARC), PowerPC, and so on. For
example, the computing devices 2154 may have x86 pro-
cessors, while the computing devices 21556 may have ARM
processors. The computing devices 215 may difler also 1n
hardware resources available, such as local storage, graphics
processing units (GPUs), machine learning extensions, and
other characteristics.

The virtual machine (VM) instances 101 may be instan-
tiated from a virtual machine (VM) image 218 configured
for a particular architecture, platform, or hardware present 1n
the computing devices 2154. To this end, customers may
specily that a virtual machine instance 101a should be
launched 1n the computing devices 215q as opposed to other

US 11,803,407 Bl

7

types of computing devices 215. The VM 1nstances 101a
may be incompatible with the particular architecture, plat-
form, or hardware present 1n the computing devices 215b.

To execute the virtual machine instances 101a 1n the
computing device 2155, an emulation layer 109 may be used
that emulates the particular architecture, platform, or hard-
ware present 1n the computing devices 2134, but within the
computing devices 2155. One commercially available
example of an emulation layer 109 1s gEMU. In addition to
VM 1nstance(s) 101a executing within the emulation layer
109 of the computing devices 2135, the computing device
215b may also execute VM instances 1015 that are config-
ured for native execution in the computing device 2155H
without the use of an emulation layer 109.

In various examples, one VM mstance 101 may be
executed singularly on a particular computing device 215, or
a plurality of VM 1nstances 101 may be executed on a
particular computing device 215. Also, a particular comput-
ing device 215 may execute ditlerent types of VM 1nstances
101, which may offer diflerent quantities of resources avail-
able via the computing device 215. For example, some types
of VM 1nstances 101 may offer more memory and process-
ing capability than other types of VM instances 101.

The components executed on the computing environment
203, for example, include a management service 221, a
migration service 224, and other applications, services,
processes, systems, engines, or functionality not discussed
in detail herein. The management service 221 1s executed to
manage the execution of virtual machine instances 101
within a cloud provider network. Authenticated users may,
for example, upload, create, or modily virtual machine
images 218, launch VM instances 101 based on virtual
machine images 218, terminate VM instances 101, configure
VM instances 101, enable automatic scaling of VM
instances 101, obtain statistics about VM 1instances 101, and
perform other functions. In some scenarios, a user may
specily a type of computing device 215 upon which a VM
instance 101 will be executed. The type of computing device
215 may be capable of natively executing the VM 1nstance
101, or the type of computing device 215 may require
emulation 1n order to resolve one or more mcompatibilities
with the VM 1instance 101. In some cases, the management
service 221 may manage the execution of applications or
other code on behalf of customers independently from VM
instances 101.

The migration service 224 1s executed to migrate VM
instances 101 from one computing device 215 to another
computing device 215. For example, the VM 1nstances 101
may be migrated from a problematic computing device 215
to a diferent computing device 215. In various scenarios, a
VM 1nstance 101 may be migrated from a computing device
215 on which 1t 1s natively executed to a computing device
215 upon which 1t 1s executed under an emulation layer 109.
The emulation layer 109 may be required to resolve one or
more incompatibilities with the VM instance 101. The
migration that 1s implemented by the migration service 224
may be a live migration, which provides that the VM
instance 101 continues to execute during the process of the
migration. Alternatively, the VM 1nstance 101 may be shut
down or suspended while being migrated from one comput-
ing device 215 to another, such as 1n the case with a reboot
migration.

The data stored in the data store 212 includes, for
example, VM 1mages 218, cost data 227, performance data
230, customer statistics 233, hardware support status 236,
VM profile data 239, executable code 242, and potentially
other data. The VM 1mages 218 correspond to data from

10

15

20

25

30

35

40

45

50

55

60

65

8

which a virtual machine instance 101 may be launched. To
this end, a VM 1mage 218 may include an operating system,
a file system, one or more applications, configurations,
and/or other data. A VM 1mage 218 may be specific to, or
configured for, execution on a particular computer architec-
ture or a particular type of computing device 215.

The cost data 227 provides cost information regarding the
execution of VM instances 101. Different types of VM
instances 101 that are run on different types of computing
devices 215 may incur diflering costs. For example, a VM
instance 101 that 1s customized for machine learning or
graphics processing may be more costly than a VM 1nstance
101 that 1s customized for basic web service functionality.
The cost data 227 may correspond to what 1s charged to
customers of a utility computing provider, such as a cloud
provider network. To this end, the cost data 227 may factor
in space required for the computing device 215, acquisition
cost for the computing device 215, power cost, cooling cost,
profit, seasonality, demand, support status for the computing
device 215, and/or other factors.

The performance data 230 indicates benchmark perfor-
mance metrics for different types of computing devices 2135
relative to types of VM instances 101. For example, the
performance data 230 may indicate a performance improve-
ment for executing a VM 1nstance 101 on a first type of
computing device 215 as compared to a second type of
computing device 215. The performance data 230 may also
indicate a performance penalty associated with the execution
of an emulation layer 109 to facilitate compatibility for an
otherwise imncompatible VM instance 101. The performance
data 230 may be generated based upon empirical observa-
tion of VM 1nstances 101 across different types of comput-
ing devices 215.

The customer statistics 233 may indicate usage, perior-
mance and/or cost metrics for VM instances 101 operated by
a specific customer. The customer statistics 233 may be
utilized to identily particular VM 1nstances 101 that would
be candidates for migration to a different type of computing
device 215.

The hardware support status 236 indicates a status for the
individual computing devices 2135. Some types of computing
devices 215 may be out of warranty and/or otherwise
unsupported by the manufacturer, supplier, or cloud provider
network. Some types of computing devices 215 may be
deprecated 1n that such types of computing devices 215 are
no longer added to the network 209, or are perhaps no longer
actively maintained. VM 1instances 101 executed on unsup-
ported or deprecated computing devices 215 may be 1deal
candidates for migration to newer hardware.

The VM profile data 239 indicates hardware resources
used by and/or compatibility requirements of particular VM
instances 101. The VM profile data 239 may be generated by
static analysis of the corresponding VM 1mage 218 or by a
dynamic analysis mvolving runtime profiling of particular
VM 1nstances 101. In this regard, the VM profile data 239
may correspond to a fingerprint of resources accessed by the
VM mstance 101 (e.g., files, local storage, hardware devices,
memory requirements, network requirements, etc.), such
that compatibility of a computing device 215 may depend on
whether the computing device 215 provides the i1dentified
resources.

The executable code 242 corresponds to code that can be
provided to the management service 221 and executed
independently of a VM 1nstance 101. For example, the
management service 221 may execute the executable code
242 upon request by a customer, taking in zero or more
parameters, and producing a result. The executable code 242

US 11,803,407 Bl

9

may be 1n a format (e.g., byte code, machine code, binary
code) that 1s specific to a particular operating system or type
of computing device 215 having a particular computing
architecture.

The client device 206 is representative of a plurality of >

client devices that may be coupled to the network 209. The
client device 206 may comprise, for example, a processor-
based system such as a computer system. Such a computer
system may be embodied 1n the form of a desktop computer,
a laptop computer, personal digital assistants, cellular tele-
phones, smartphones, set-top boxes, music players, web
pads, tablet computer systems, game consoles, electronic
book readers, smartwatches, head mounted displays, voice
interface devices, or other devices. The client device 206
may include a display comprising for example, one or more
devices such as liqud crystal display (LCD) displays, gas
plasma-based flat panel displays, organic light emitting
diode (OLED) displays, electrophoretic ink (E 1nk) displays,
LCD projectors, or other types of display devices, efc.

The client device 206 may be configured to execute
various applications such as a client application 248 and/or
other applications. The client application 248 may be
executed 1n a client device 206, for example, to access
network content served up by the computing environment
203 and/or other servers, thereby rendering a user interface
on the display. The client application 248 may be used by a
customer of a cloud network provider or other utility com-
puting provider to interact with the management service 221
and/or the migration service 224 in order to launch VM
instances 101, terminate VM instances 101, migrate VM
instances 101 to different computing devices 215, cause
executable code 242 to be executed, or perform other
functions. To this end, the client application 248 may
comprise, for example, a browser, a dedicated application,
etc., and the user interface may comprise a network page, an
application screen, etc. The client device 206 may be con-
figured to execute applications beyond the client application
248 such as, for example, email applications, social net-
working applications, word processors, spreadsheets, and/or
other applications.

Continuing to FIG. 3, shown 1s a block diagram of a
computing device 215 according to one or more embodi-
ments. The computing device 215 includes one or more
processors 300 having a particular computing architecture
such as ARM, x86, or other architectures. The processor 300
may include virtualization extensions 303 in hardware to
support virtualization and/or emulation. The computing
device 2135 further includes a virtualization layer 306, an
emulation layer 109, and a virtual machine instance 101
executed on top of both the virtualization layer 306 and the
emulation layer 109.

The wvirtualization layer 306 enables a virtual machine
instance 101 to be executed 1n a virtualized environment so
that multiple virtual machine instances 101 may be executed
concurrently in the computing device 215. The virtualized
environment may virtualize hardware resources, such that
cach virtual machine mstance 101 sees exclusive access to
the virtualized hardware resources. The virtualization layer
306 may 1nclude a hypervisor to manage the virtual machine
instances 101.

The emulation layer 109 emulates or simulates a com-
puting architecture required by the virtual machine instance
101 but not available 1n the computing device 215. To this
end, the emulation layer 109 may emulate an instruction set
for the processor 300, emulate local storage using network-

10

15

20

25

30

35

40

45

50

55

60

65

10

based storage, emulate a graphics processing unit (GPU),
emulate machine learning customizations for a computing
device 215, and so forth.

Although the examples herein discuss a virtual machine
istance 101, 1t 1s understood that the principles of the
present disclosure also pertain to machine instances that do
not employ a virtualization layer 306, which are instead
executed directly on “bare metal” computing devices 215. In
such scenarios, the emulation layer 109 may be employed
for compatibility of the machine instance without a corre-
sponding virtualization layer 306.

Referring next to FIG. 4, shown 1s a flowchart that
provides one example of the operation of a portion of the
management service 221 according to various embodiments.
It 1s understood that the flowchart of FIG. 4 provides merely
an example of the many different types of functional
arrangements that may be employed to implement the opera-
tion of the portion of the management service 221 as
described herein. As an alternative, the flowchart of FIG. 4
may be viewed as depicting an example of elements of a
method implemented in the computing environment 203
(FI1G. 2) according to one or more embodiments.

Beginning with box 403, the management service 221
receives a request to launch a VM instance 101 (FIG. 2)
configured for a first computing architecture. In one sce-
nario, the request 1s received from a customer via the client
application 248 (FI1G. 2) over the network 209 (FIG. 2). In
another scenario, the request 1s generated automatically by
logic such as automated scaling logic 1n response to utili-
zation of existing VM instances 101. In one example, the
request specifies that the VM instance 101 should be
executed on a specific type of computing device 215 (FIG.
2) having a second computing architecture. In another
example, the request may leave a particular type of com-
puting device 215 or computing architecture unspecified.

In box 406, the management service 221 determines from
the cost data 227 (FIG. 2) a cost reduction associated with
executing the VM 1nstance 101 1n a computing device 215
having the second computing architecture as opposed to
executing the VM 1nstance 101 1n a computing device 215
having the first computing architecture. For example, the
computing device 215 may be less costly for a customer to
use due to lower acquisition costs, lesser rack space, lower
power consumption, lesser cooling requirements, and so on.

In box 409, the management service 221 determines from
the performance data 230 (FIG. 2) a performance improve-
ment to execute the VM instance 101 in the computing
device 215 having the second computing architecture as
opposed to a computing device 215 having the first com-
puting architecture. The computing device 215 having the
second computing architecture may have a faster processor
300 (FIG. 3), an increased quantity of processors 300 or
processing cores, more memory, a faster bus, and/or other
characteristics that result in a performance improvement.

In box 412, the management service 221 determines from
the performance data 230 a performance penalty associated
with the emulation layer 109 (FIG. 2). To execute a VM
instance 101 under the emulation layer 109, there may be a
performance penalty. In other words, the emulation func-
tionality may have an overhead that consumes processor
time, memory, and/or other computing resources, thereby
reducing overall performance by a measurable quantity.

In box 415, the management service 221 determines that
the performance improvement and/or cost reduction out-
weigh or overcome the performance penalty. In one
example, the performance penalty may cancel out the per-
formance improvement, but the customer and/or the cloud

US 11,803,407 Bl

11

provider network may benefit from a cost reduction. In
another example, the performance improvement may be
greater than the performance penalty, resulting in a net
performance improvement. In still another example, the
performance penalty may exceed a performance improve-
ment, but the cost reduction may be substantial and desirable
for the user. The management service 221 may also deter-
mine irom the hardware support status 236 (FIG. 2) that a
computing device 215 having the first computing architec-
ture may be deprecated, unsupported, or unavailable, thus
making 1t desirable not to use that computing device 215 and
to execute the VM instance 101 on a different type of
computing device 215. In other scenarios, the management
service 221 may determine that an improvement in flexibil-
ity of managing a pool of hosts with respect to supply
pipelines may outweigh any performance penalty.

In box 421, the management service 221 launches the VM
instance 101 1n a computing device 2135 having the second
computing architecture using an emulation layer 109, or
otherwise assigns the VM 1nstance 101 for execution 1n that
computing device 215. In one scenario, the management
service 221 may inform the user that the VM 1nstance 101
has been launched 1n the computing device 2135 having the
second computing architecture using the emulation layer
109. In another scenario, the management service 221 may
refrain from notifying the user of the underlying hardware
used to launch the VM instance 101. Thereafter, the opera-
tion of the portion of the management service 221 ends.

Moving on to FIG. 5, shown 1s a flowchart that provides
one example of the operation of another portion of the
management service 221 according to various embodiments.
It 1s understood that the flowchart of FIG. 5 provides merely
an example of the many different types of functional
arrangements that may be employed to implement the opera-
tion of the portion of the management service 221 as
described herein. As an alternative, the flowchart of FIG. 5
may be viewed as depicting an example of elements of a
method implemented 1n the computing environment 203
(FIG. 2) according to one or more embodiments.

Beginning with box 3503, the management service 221
receives a request to launch computer code such as execut-
able code 242 (FIG. 2) configured for a first computing
architecture. The computer code may be provided with zero
or more mmput parameters and/or environmental parameters
for execution under a utility computing model. The com-
puter code may correspond to a function, a containerized
application, or other code that 1s executed within a serverless
environment. In one scenario, the request 1s received from a
customer via the client application 248 (FIG. 2) over the
network 209 (FIG. 2). In another scenario, the request 1s
generated automatically. In one example, the request speci-
fies that the computer code should be executed on a specific
type of computing device 215 (FIG. 2) having a second
computing architecture. In another example, the request may
leave a particular type of computing device 215 or comput-
ing architecture unspecified.

In box 506, the management service 221 determines from
the cost data 227 (FIG. 2) a cost reduction associated with
executing the computer code in a computing device 2135
having the second computing architecture as opposed to
executing the computer code natively 1n a computing device
215 having the first computing architecture. For example,
the computing device 215 may be less costly for a customer
to use due to lower acquisition costs, lesser rack space, lower
power consumption, lesser cooling requirements, and so on.

In box 509, the management service 221 determines from
the performance data 230 (FIG. 2) a performance improve-

10

15

20

25

30

35

40

45

50

55

60

65

12

ment to execute the computer code 1 the computing device
215 having the second computing architecture as opposed to
a computing device 215 having the first computing archi-
tecture. The computing device 215 having the second com-
puting architecture may have a faster processor 300 (FI1G. 2),
an increased quantity of processors 300 or processing cores,
more memory, a faster bus, and/or other characteristics that
result 1n a performance improvement.

In box 512, the management service 221 determines from
the performance data 230 a performance penalty associated
with the emulation layer 109 (FIG. 2). To execute the
computer code under the emulation layer 109, there may be
a performance penalty. In other words, the emulation func-
tionality may have an overhead that consumes processor
time, memory, and/or other computing resources, thereby
reducing overall performance by a measurable quantity.

In box 515, the management service 221 determines that
the performance improvement and/or cost reduction out-
weigh or overcome the performance penalty. In one
example, the performance penalty may cancel out the per-
formance improvement, but the customer and/or the cloud
provider network may benefit from a cost reduction. In
another example, the performance improvement may be
greater than the performance penalty, resulting in a net
performance improvement. In still another example, the
performance penalty may exceed a performance improve-
ment, but the cost reduction may be substantial and desirable
for the user. The management service 221 may also deter-
mine from the hardware support status 236 (FIG. 2) that a
computing device 215 having the first computing architec-
ture may be deprecated, unsupported, or unavailable, thus
making 1t desirable not to use that computing device 215 and
to execute the computer code on a diflerent type of com-
puting device 215. In other scenarios, the management
service 221 may determine that an improvement 1n flexibil-
ity ol managing a pool of hosts with respect to supply
pipelines may outweigh any performance penalty.

In box 3521, the management service 221 launches the
computer code 1 a computing device 215 having the second
computing architecture using an emulation layer 109, or
otherwise assigns the computer code for execution in that
computing device 215. In one scenario, the management
service 221 may inform the user that the computer code has
been launched in the computing device 215 having the
second computing architecture using the emulation layer
109. In another scenario, the management service 221 may
refrain from notilying the user of the underlying hardware
used to launch the computer code. Thereafter, the operation
of the portion of the management service 221 ends.

Turning now to FIG. 6, shown 1s a flowchart that provides
one example of the operation of a portion of the migration
service 224 according to various embodiments. It 1s under-
stood that the flowchart of FIG. 6 provides merely an
example of the many different types of functional arrange-
ments that may be employed to implement the operation of
the portion of the migration service 224 as described herein.
As an alternative, the flowchart of FIG. 6 may be viewed as
depicting an example of elements of a method implemented
in the computing environment 203 (FIG. 2) according to one
or more embodiments.

Beginning with box 603, the migration service 224 deter-
mines that a VM instance 101 (FI1G. 2) 1s being executed in
a first computing device 215 (FIG. 2) having a first com-
puting architecture. The VM 1nstance 101 may be configured
for execution 1n a type of computing device 215 such as the
first computing device 215, or specifically under the first
computing architecture.

US 11,803,407 Bl

13

In box 606, the migration service 224 profiles the VM
instance 101, thereby generating VM profile data 239 (FIG.
2). In this regard, the migration service 224 may perform a
static analysis and/or a dynamic analysis to understand what
resources of the first computing device 215 are actually used
or are predicted to be used by the VM 1nstance 101. For
example, the migration service 224 may determine by this
profiling that the VM 1nstance 101 uses local storage of the
computing device 215 or, alternatively, that the VM 1nstance
101 does not use the local storage. The profiling may also be
used to determine or estimate a performance penalty asso-
ciated with an emulation layer 109 (FIG. 2) 11 a migration 1s
performed. For example, the profiling may determine that
the VM instance 101 frequently generates a number of
instructions that are more complex to emulate, or the pro-
filing may determine that the VM instance 101 generates
mostly simple instructions that are efliciently emulated.

In box 609, the migration service 224 determines to
migrate the VM instance 101 to a second computing device
215 having a second computing architecture. In one sce-
nario, the migration service 224 may receive a migration
request from a user via a client application 248 (FI1G. 2) over
the network 209 (FIG. 2). In another scenario, the determi-
nation to migrate the VM instance 101 may be made
automatically by the migration service 224 based upon the
first computing device 215 being deprecated, unsupported,
or otherwise unavailable, and/or to reduce cost to the cus-
tomer or to the cloud provider network, and/or to improve
performance of the VM 1nstance 101.

In particular, the migration service 224 may determine
that a performance improvement and/or cost reduction out-
welgh or overcome a performance penalty associated with
using an emulation layer 109. In one example, the perfor-

mance penalty may cancel out the performance improve-
ment, but the customer and/or the cloud provider network
may benefit from a cost reduction. In another example, the
performance improvement may be greater than the perfor-
mance penalty, resulting 1n a net performance improvement.
In still another example, the performance penalty may
exceed a performance improvement, but the cost reduction
may be substantial and desirable for the user. In yet another
example, the migration service 224 determines to migrate
the VM 1nstance 101 to more flexibly manage hardware for
a cloud computing provider.

In box 612, the migration service 224 migrates the VM
instance 101 to the second computing device 215. For
example, the migration service 224 may make a copy of the
VM mstance 101 from the memory and/or processor state of
the computing device 215 and transfer that copy to the
second computing device 215. This may be referred to as a
live migration. This may also involve redirecting hostnames,
network addresses, and/or other 1dentifiers 1n order to reach
the VM 1nstance 101 at the destination second computing,
device 2135.

In box 615, the migration service 224 determines that one
or more incompatibilities exist for the VM instance 101
under the second computing device 215. For example, the
migration service 224 may determine from the VM profile
data 239 that the incompatibility exists. Alternatively, while
the VM mstance 101 1s executed 1n the second computing
device 215, the emulation layer 109 may trap an unsup-
ported instruction or a system call to an unavailable feature.

In box 618, the migration service 224 causes the second
computing device 215 to use the emulation layer 109 to
execute the VM mstance 101. The emulation layer 109
emulates the first computing architecture under the second
computing architecture, thereby resolving one or more 1den-

10

15

20

25

30

35

40

45

50

55

60

65

14

tified incompatibilities for the VM instance 101. Thereafter,
the operation of the portion of the migration service 224
ends.

Although the flowchart of FIG. 6 discusses migrating a
VM instance 101 from one computing device 215 to another,
the principles of FIG. 6 also apply to migrating computer
code such as executable code 242 (FIG. 2) from execution
under one type of platform using a first computing archi-
tecture to another type of platform using a second computing
architecture. In some cases, the computer code may be
executed 1n a serverless environment using a container, but
the container and/or the code may be specific to a certain
architecture, and thus, an emulation technique may be
necessary to adapt to a change in hardware. In various
scenarios, a VM instance 101 may be migrated into a
container, or a container may be migrated mto a VM
mstance 101, and emulation techniques as described may be
used to adapt to an architecture change.

With reference to FIG. 7, shown 1s a schematic block
diagram of the computing environment 203 according to an
embodiment of the present disclosure. The computing envi-
ronment 203 icludes one or more computing devices 700.
Each computing device 700 includes at least one processor
circuit, for example, having a processor 703 and a memory
706, both of which are coupled to a local interface 709. To
this end, each computing device 700 may comprise, for
example, at least one server computer or like device. The
local interface 709 may comprise, for example, a data bus
with an accompanying address/control bus or other bus
structure as can be appreciated.

Stored 1 the memory 706 are both data and several
components that are executable by the processor 703. In
particular, stored 1n the memory 706 and executable by the
processor 703 are the management service 221, the migra-
tion service 224, and potentially other applications. Also
stored 1n the memory 706 may be a data store 212 and other
data. In addition, an operating system may be stored in the
memory 706 and executable by the processor 703.

It 1s understood that there may be other applications that
are stored in the memory 706 and are executable by the
processor 703 as can be appreciated. Where any component
discussed herein 1s implemented 1n the form of software, any
one of a number of programming languages may be
employed such as, for example, C, C++, C#, Objective C,
Java®, JavaScript®, Perl, PHP, Visual Basic®, Python®,
Ruby, Flash®, or other programming languages.

A number of software components are stored in the
memory 706 and are executable by the processor 703. In this
respect, the term “executable” means a program file that 1s
in a form that can ultimately be run by the processor 703.
Examples of executable programs may be, for example, a
compiled program that can be translated into machine code
in a format that can be loaded 1nto a random access portion
of the memory 706 and run by the processor 703, source
code that may be expressed 1n proper format such as object
code that 1s capable of being loaded into a random access
portion of the memory 706 and executed by the processor
703, or source code that may be interpreted by another
executable program to generate instructions 1 a random
access portion of the memory 706 to be executed by the
processor 703, etc. An executable program may be stored in
any portion or component of the memory 706 including, for
example, random access memory (RAM), read-only
memory (ROM), hard drive, solid-state drive, USB flash
drive, memory card, optical disc such as compact disc (CD)
or digital versatile disc (DVD), tloppy disk, magnetic tape,
or other memory components.

US 11,803,407 Bl

15

The memory 706 1s defined herein as including both
volatile and nonvolatile memory and data storage compo-
nents. Volatile components are those that do not retain data
values upon loss of power. Nonvolatile components are
those that retain data upon a loss of power. Thus, the
memory 706 may comprise, for example, random access

memory (RAM), read-only memory (ROM), hard disk
drives, solid-state drives, USB flash drives, memory cards
accessed via a memory card reader, tfloppy disks accessed
via an associated floppy disk drive, optical discs accessed
via an optical disc drive, magnetic tapes accessed via an
appropriate tape drive, and/or other memory components, or
a combination of any two or more of these memory com-
ponents. In addition, the RAM may comprise, for example,
static random access memory (SRAM), dynamic random

access memory (DRAM), or magnetic random access
memory (MRAM) and other such devices. The ROM may

comprise, for example, a programmable read-only memory
(PROM), an erasable programmable read-only memory
(EPROM), an electrically erasable programmable read-only
memory (EEPROM), or other like memory device.

Also, the processor 703 may represent multiple proces-
sors 703 and/or multiple processor cores and the memory
706 may represent multiple memories 706 that operate 1n
parallel processing circuits, respectively. In such a case, the
local interface 709 may be an appropriate network that
facilitates communication between any two of the multiple
processors 703, between any processor 703 and any of the
memories 706, or between any two of the memories 706, etc.
The local imterface 709 may comprise additional systems
designed to coordinate this communication, icluding, for
example, performing load balancing. The processor 703 may
be of electrical or of some other available construction.

Although the management service 221, the migration
service 224, and other various systems described herein may
be embodied in software or code executed by general
purpose hardware as discussed above, as an alternative the
same may also be embodied 1n dedicated hardware or a
combination of software/general purpose hardware and
dedicated hardware. If embodied 1n dedicated hardware,
cach can be implemented as a circuit or state machine that
employs any one of or a combination of a number of
technologies. These technologies may include, but are not
limited to, discrete logic circuits having logic gates for
implementing various logic functions upon an application of
one or more data signals, application specific integrated
circuits (ASICs) having appropriate logic gates, field-pro-
grammable gate arrays (FPGAs), or other components, etc.
Such technologies are generally well known by those skilled
in the art and, consequently, are not described in detail
herein.

The flowcharts of FIGS. 4-6 show the functionality and
operation ol an implementation of portions of the manage-
ment service 221 and the migration service 224. If embodied
in soitware, each block may represent a module, segment, or
portion of code that comprises program instructions to
implement the specified logical function(s). The program
istructions may be embodied 1n the form of source code
that comprises human-readable statements written 1n a pro-
gramming language or machine code that comprises numeri-
cal mstructions recognizable by a suitable execution system
such as a processor 703 1n a computer system or other
system. The machine code may be converted from the
source code, etc. If embodied in hardware, each block may
represent a circuit or a number of interconnected circuits to
implement the specified logical function(s).

10

15

20

25

30

35

40

45

50

55

60

65

16

Although the flowcharts of FIGS. 4-6 show a specific
order of execution, 1t 1s understood that the order of execu-
tion may difler from that which 1s depicted. For example, the
order of execution of two or more blocks may be scrambled
relative to the order shown. Also, two or more blocks shown
in succession 1n FIGS. 4-6 may be executed concurrently or
with partial concurrence. Further, 1n some embodiments, one
or more of the blocks shown 1n FIGS. 4-6 may be skipped
or omitted. In addition, any number of counters, state
variables, warning semaphores, or messages might be added
to the logical flow described herein, for purposes of
enhanced utility, accounting, performance measurement, or
providing troubleshooting aids, etc. It 1s understood that all
such variations are within the scope of the present disclo-
sure.

Also, any logic or application described herein, including
the management service 221 and the migration service 224,
that comprises software or code can be embodied 1n any
non-transitory computer-readable medium for use by or in
connection with an instruction execution system such as, for
example, a processor 703 in a computer system or other
system. In this sense, the logic may comprise, for example,
statements including instructions and declarations that can
be {fetched from the computer-readable medium and
executed by the mnstruction execution system. In the context
of the present disclosure, a “computer-readable medium”™
can be any medium that can contain, store, or maintain the
logic or application described hereimn for use by or in
connection with the mnstruction execution system.

The computer-readable medium can comprise any one of
many physical media such as, for example, magnetic, opti-
cal, or semiconductor media. More specific examples of a
suitable computer-readable medium would include, but are
not limited to, magnetic tapes, magnetic floppy diskettes,
magnetic hard drives, memory cards, solid-state drives, USB
flash drives, or optical discs. Also, the computer-readable
medium may be a random access memory (RAM) including,
for example, static random access memory (SRAM) and
dynamic random access memory (DRAM), or magnetic
random access memory (MRAM). In addition, the com-
puter-readable medium may be a read-only memory (ROM),
a programmable read-only memory (PROM), an erasable
programmable read-only memory (EPROM), an electrically
crasable programmable read-only memory (EEPROM), or
other type of memory device.

Further, any logic or application described herein, includ-
ing the management service 221 and the migration service
224, may be implemented and structured in a variety of
ways. For example, one or more applications described may
be implemented as modules or components of a single
application. Further, one or more applications described
herein may be executed in shared or separate computing
devices or a combination thereof. For example, a plurality of
the applications described herein may execute 1n the same
computing device 700, or in multiple computing devices 700
in the same computing environment 203.

Disjunctive language such as the phrase “at least one of X,
Y, or Z,” unless specifically stated otherwise, 1s otherwise
understood with the context as used 1n general to present that
an item, term, etc., may be either X, Y, or Z, or any

combination thereol (e.g., X, Y, and/or Z). Thus, such
disjunctive language 1s not generally intended to, and should
not, imply that certain embodiments require at least one of
X, at least one ol Y, or at least one of Z to each be present.

US 11,803,407 Bl

17

Embodiments of the present disclosure may be repre-
sented 1n the following clauses:

Clause 1. A non-transitory computer-readable medium
embodying a program executable in at least one computing
device, wherein when executed the program causes the at
least one computing device to at least: receive a request to
launch a virtual machine instance using a virtual machine
image, the virtual machine image being configured for
execution under a first computing architecture; determine a
cost reduction associated with use of a second computing
architecture instead of the first computing architecture;
determine a performance improvement associated with use
of the second computing architecture instead of the first
computing architecture; determine a performance penalty
associated with executing an emulation layer 1n the second
computing architecture to emulate the first computing archi-
tecture; and launch the virtual machine 1nstance 1n a com-
puting device having the second computing architecture
using the emulation layer to emulate the first computing,
architecture, the virtual machine 1nstance being launched 1n
the computing device having the second computing archi-
tecture based at least in part on the cost reduction and
determining that the performance improvement overcomes
the performance penalty.

Clause 2. The non-transitory computer-readable medium
of clause 1, wherein the first computing architecture corre-
sponds to an x86 architecture, and the second computing
architecture corresponds to an ARM architecture.

Clause 3. The non-transitory computer-readable medium
of clause 1, wherein the virtual machine instance 1s launched
in the computing device having the second computing
architecture further based at least 1n part on determining that
a second computing device having the first computing
architecture 1s unavailable.

Clause 4. A system, comprising: at least one computing
device; and instructions executable i1n the at least one
computing device, wherein when executed the instructions
cause the at least one computing device to at least: receive
a request to launch computer code configured for execution
under a first computing architecture; determine that a first
computing device having a second computing architecture
provides at least one of a cost reduction, a flexibility
improvement, or a performance improvement over a second
computing device having the first computing architecture;
and assign the computer code for execution in the first
computing device using an emulation layer to emulate the
first computing architecture in response to the at least one of
the cost reduction or the performance improvement.

Clause 3. The system of clause 4, wherein when executed
the instructions further cause the at least one computing
device to at least: determine a performance penalty associ-
ated with using the emulation layer in the first computing
device to execute the computer code as compared to execut-
ing the computer code in the second computing device
having the first computing architecture; and determine that
the performance improvement at least overcomes the per-
formance penalty.

Clause 6. The system of clause 4, wherein when executed
the instructions further cause the at least one computing
device to at least: determine a performance penalty associ-
ated with using the emulation layer in the first computing
device to execute second computer code configured for
execution under the first computing architecture as com-
pared to executing the second computer code 1n the second
computing device having the first computing architecture;
determine that the performance improvement does not over-
come the performance penalty; and assign the second com-

10

15

20

25

30

35

40

45

50

55

60

65

18

puter code for execution in the second computing device
instead of the first computing device.

Clause 7. The system of clause 4, wherein the computer
code corresponds to a virtual machine image that includes an
operating system that 1s executable in the first computing
architecture.

Clause 8. The system of clause 7, wherein when executed
the instructions further cause the at least one computing
device to at least launch a virtual machine instance corre-
sponding to the virtual machine image 1n the first computing
device using the emulation layer.

Clause 9. The system of clause 4, wherein the computer
code corresponds to bimary code compiled for the first
computing architecture, the binary code including at least
one 1nstruction incompatible with the second computing
architecture.

Clause 10. The system of clause 4, wherein the emulation
layer emulates 1n the first computing device, using a net-
work-based storage, a local storage of the second computing
device having the first computing architecture.

Clause 11. The system of clause 4, wherein the emulation
layer emulates 1n the first computing device a graphics
processing unit of the second computing device having the
first computing architecture, the graphics processing unit
being absent from the first computing device.

Clause 12. The system of clause 4, wherein the first
computing device includes at least one hardware resource to
implement the emulation layer at least partially in hardware.

Clause 13. A method, comprising: receiving a request to
launch a virtual machine instance using a virtual machine
image, the virtual machine image being configured for
execution under a first computing architecture; and execut-
ing the virtual machine nstance i a computing device
having a second computing architecture by using an emu-
lation layer 1n the computing device to emulate the first
computing architecture in the second computing architec-
ture.

Clause 14. The method of clause 13, wherein a first
processor istruction set of the first computing architecture
differs from a second processor instruction set of the second
computing architecture.

Clause 15. The method of clause 13, wherein the second
computing architecture of the computing device 1s unspeci-
fied 1n the request.

Clause 16. The method of clause 13, wherein the second
computing architecture of the computing device 1s specified
in the request.

Clause 17. The method of clause 13, wherein the virtual
machine 1image 1s mncompatible with the second computing
architecture without the emulation layer.

Clause 18. The method of clause 13, further comprising,
determining to execute the virtual machine instance in the
computing device based at least in part on a lower cost
associated with executing the virtual machine instance in the
computing device as compared to another computing device
that natively implements the first computing architecture.

Clause 19. The method of clause 13, further comprising
determining to execute the virtual machine instance 1n the
computing device based at least in part on a performance
improvement associated with the computing device as com-
pared to another computing device that natively implements
the first computing architecture.

Clause 20. The method of clause 19, further comprising,
determining to execute the virtual machine instance in the
computing device further based at least in part on the
performance improvement exceeding a performance penalty
associated with execution of the emulation layer.

US 11,803,407 Bl

19

Clause 21. A non-transitory computer-readable medium
embodying a program executable in at least one computing
device, wherein when executed the program causes the at
least one computing device to at least: execute a virtual
machine 1nstance 1n a first computing device having a first
computing architecture, the first computing device being 1n
a cloud provider network; determine to migrate the virtual
machine 1nstance to a second computing device having a
second computing architecture in the cloud provider net-
work based at least 1in part on the first computing device
being deprecated by the cloud provider network; migrate the
virtual machine instance to the second computing device
without terminating the virtual machine instance; determine
that an 1ncompatibility exists for the wvirtual machine
instance in the second computing device; and cause the
second computing device to emulate the first computing
architecture for the virtual machine instance in the second
computing device using an emulation layer.

Clause 22. The non-transitory computer-readable medium
of clause 21, wherein when executed the program further
causes the at least one computing device to at least deter-
mine that a performance improvement associated with the
second computing device overcomes a performance penalty
associated with use of the emulation layer.

Clause 23. A system, comprising: at least one computing,
device; and instructions exXecutable i1n the at least one
computing device, wherein when executed the instructions
cause the at least one computing device to at least: execute
a virtual machine instance 1 a first computing device;
migrate the virtual machine instance to a second computing
device; determine that an incompatibility exists for the
virtual machine instance in the second computing device;
and cause the second computing device to emulate at least
one feature of the first computing device for the virtual
machine 1nstance 1n the second computing device.

Clause 24. The system of clause 23, wherein the virtual
machine instance 1s migrated based at least in part on the
first computing device being deprecated by a utility com-
puting provider.

Clause 235. The system of clause 23, wherein the virtual
machine instance 1s migrated based at least 1n part on a cost
reduction to an operator of the virtual machine mstance for
executing the virtual machine instance 1n the second com-
puting device instead of the first computing device.

Clause 26. The system of clause 23, wherein the virtual
machine instance 1s migrated in response to a request to
migrate recerved from an operator of the virtual machine
instance.

Clause 277. The system of clause 23, wherein the virtual
machine 1nstance 1s migrated without terminating the virtual
machine 1nstance.

Clause 28. The system of clause 23, wherein migrating the
virtual machine instance further comprises copying at least
a portion of a first memory of the first computing device to
a second memory of the second computing device.

Clause 29. The system of clause 23, wherein the at least
one feature corresponds to a local storage of the first
computing device, and the local storage 1s emulated using a
network-based storage in the second computing device.

Clause 30. The system of clause 23, wherein the at least
one feature corresponds to a graphics processing unit of the
first computing device, and the graphics processing unit 1s
emulated 1n a general purpose processor of the second
computing device.

Clause 31. The system of clause 23, wherein the at least
one feature corresponds to a processor instruction set of the
first computing device.

10

15

20

25

30

35

40

45

50

55

60

65

20

Clause 32. The system of clause 23, wherein the incom-
patibility comprises an operating system of the wvirtual
machine instance that 1s imcompatible with the second
computing device.

Clause 33. The system of clause 23, wherein determining,
that the imcompatibility exists for the wvirtual machine
instance 1n the second computing device further comprises:
trapping an instruction generated by the virtual machine
instance; and determining that the instruction 1s not sup-
ported by the second computing device.

Clause 34. A method, comprising: executing a virtual
machine instance configured for a first computing architec-
ture 1n a first computing device having the first computing
architecture; migrating the virtual machine instance from the
first computing device to a second computing device having
a second computing architecture; and executing the virtual
machine 1nstance 1n the second computing device using an
emulation layer that emulates the first computing architec-
ture i the second computing architecture.

Clause 35. The method of clause 34, wherein the virtual
machine instance includes an operating system compatible
with the first computing architecture and incompatible with
the second computing architecture.

Clause 36. The method of clause 34, further comprising
determining to migrate the virtual machine instance from the
first computing device to the second computing device based

at least 1n part on the first computing device being depre-
cated.

Clause 37. The method of clause 34, further comprising
determining to migrate the virtual machine instance from the
first computing device to the second computing device based
at least 1n part on a cost reduction associated with executing
the virtual machine 1nstance 1n the second computing device
instead of the first computing device.

Clause 38. The method of clause 34, further comprising
determining to migrate the virtual machine instance from the
first computing device to the second computing device based
at least 1n part on at least one of: a flexibility improvement,
a physical space reduction, a cooling requirement reduction,
or a power consumption reduction of the second computing
device compared to the first computing device.

Clause 39. The method of clause 34, further comprising
determining to migrate the virtual machine instance from the
first computing device to the second computing device based
at least 1 part on a performance improvement associated
with executing the virtual machine instance in the second
computing device istead of the first computing device.

Clause 40. The method of clause 39, further comprising
determining to migrate the virtual machine instance from the
first computing device to the second computing device based
at least 1n part on determining that the performance improve-
ment overcomes a performance penalty associated with
executing the emulation layer.

It should be emphasized that the above-described embodi-
ments of the present disclosure are merely possible
examples of implementations set forth for a clear under-
standing of the principles of the disclosure. Many variations
and modifications may be made to the above-described
embodiment(s) without departing substantially from the
spirit and principles of the disclosure. All such modifications
and variations are intended to be included herein within the
scope ol this disclosure and protected by the following
claims.

US 11,803,407 Bl

21

Therelore, the following 1s claimed:

1. A non-transitory computer-readable medium embody-
ing a program executable in at least one computing device,
wherein when executed the program causes the at least one
computing device to at least:

execute a virtual machine instance in a first computing,

device having a first computing architecture, the first
computing device being in a cloud provider network;

determine to migrate the virtual machine instance to a

second computing device having a second computing
architecture in the cloud provider network based at
least 1n part on the first computing device being dep-
recated by the cloud provider network;

migrate the virtual machine nstance to the second com-

puting device without terminating the virtual machine
instance;
determine that an mmcompatibility exists for the virtual
machine 1nstance 1n the second computing device;

determine that an improvement 1n a performance metric
that 1s 1dentified for the wvirtual machine instance
executed on the second computing device i1s greater
than a penalty to the performance metric corresponding
to use ol an emulation layer that resolves the incom-
patibility; and

cause the second computing device to emulate the first

computing architecture for the virtual machine nstance
in the second computing device using the emulation
layer.

2. The non-transitory computer-readable medium of claim
1, wherein the virtual machine instance continues to execute
on the first computing device during a migration process that
migrates the virtual machine instance to the second com-
puting device.

3. A system, comprising;:

at least one computing device; and

instructions executable in the at least one computing

device, wherein when executed the instructions cause
the at least one computing device to at least:

execute a virtual machine instance in a first computing,

device;

migrate the virtual machine instance to a second comput-

ing device;
determine that an mmcompatibility exists for the virtual
machine 1nstance 1n the second computing device;

determine that an improvement 1n a performance metric
that 1s 1dentified for the wvirtual machine instance
executed on the second computing device i1s greater
than a penalty to the performance metric corresponding,
to use of an emulation layer that resolves the 1ncom-
patibility; and

cause the second computing device to emulate at least one

feature of the first computing device for the virtual
machine instance in the second computing device.

4. The system of claim 3, wherein the virtual machine
instance 1s migrated based at least in part on the first
computing device being deprecated by a utility computing
provider.

5. The system of claim 3, wherein the virtual machine
instance 1s migrated based at least in part on a cost reduction
to an operator of the virtual machine 1nstance for executing,
the virtual machine instance 1n the second computing device
instead of the first computing device.

6. The system of claim 3, wherein the virtual machine
instance 1s migrated in response to a request to migrate
received from an operator of the virtual machine instance.

10

15

20

25

30

35

40

45

50

55

60

65

22

7. The system of claim 3, wherein the virtual machine
instance 1s migrated without terminating the virtual machine
instance.

8. The system of claim 3, wherein migrating the virtual
machine 1nstance further comprises copying at least a por-
tion of a first memory of the first computing device to a
second memory of the second computing device.

9. The system of claim 3, wherein the at least one feature
corresponds to a local storage of the first computing device,
and the local storage 1s emulated using a network-based
storage 1n the second computing device.

10. The system of claim 3, wherein the at least one feature
corresponds to a graphics processing unit of the first com-
puting device, and the graphics processing unit 1s emulated
in a general purpose processor of the second computing
device.

11. The system of claim 3, wherein the at least one feature
corresponds to a processor mstruction set of the first com-
puting device.

12. The system of claim 3, wherein the incompatibility
comprises an operating system of the virtual machine
instance that 1s incompatible with the second computing
device.

13. The system of claim 3, wherein determining that the
incompatibility exists for the virtual machine instance 1n the
second computing device further comprises:

trapping an instruction generated by the virtual machine

instance; and

determiming that the instruction 1s not supported by the

second computing device.

14. A method, comprising:

executing a virtual machine instance configured for a first

computing architecture in a first computing device
having the first computing architecture;
migrating the virtual machine instance from the first
computing device to a second computing device having
a second computing architecture;

determining that an improvement 1n a performance metric
that 1s 1dentified for the wvirtual machine instance
executed on the second computing device 1s greater
than a penalty to the performance metric corresponding
to use of an emulation layer; and

executing the virtual machine instance in the second

computing device using the emulation layer that emu-
lates the first computing architecture in the second
computing architecture.

15. The method of claim 14, wherein the virtual machine
instance includes an operating system compatible with the
first computing architecture and incompatible with the sec-
ond computing architecture.

16. The method of claim 14, further comprising deter-
mining to migrate the virtual machine instance from the first
computing device to the second computing device based at
least 1n part on the first computing device being deprecated.

17. The method of claim 14, further comprising deter-
mining to migrate the virtual machine instance from the first
computing device to the second computing device based at
least 1n part on a cost reduction associated with executing the
virtual machine instance in the second computing device
instead of the first computing device.

18. The method of claim 14, further comprising deter-
mining to migrate the virtual machine instance from the first
computing device to the second computing device based at
least 1n part on at least one of: a flexibility improvement, a
physical space reduction, a cooling requirement reduction,
or a power consumption reduction of the second computing
device compared to the first computing device.

US 11,803,407 Bl

23

19. The method of claim 14, wherein the virtual machine
instance continues to execute on the first computing device
during a migration process that migrates the virtual machine
instance to the second computing device.

20. The method of claim 19, further comprising deter-
mimng to migrate the virtual machine mstance from the first
computing device to the second computing device based at

least 1n part on determining that the improvement overcomes
a performance penalty associated with executing the emu-

lation layer.

10

24

	Front Page
	Drawings
	Specification
	Claims

